
Mesiti et al. GigaScience 2014, 3:5
http://www.gigasciencejournal.com/content/3/1/5

RESEARCH Open Access

Think globally and solve locally: secondary
memory-based network learning for automated
multi-species function prediction
Marco Mesiti†, Matteo Re† and Giorgio Valentini*†

Abstract

Background: Network-based learning algorithms for automated function prediction (AFP) are negatively affected by
the limited coverage of experimental data and limited a priori known functional annotations. As a consequence their
application to model organisms is often restricted to well characterized biological processes and pathways, and their
effectiveness with poorly annotated species is relatively limited. A possible solution to this problem might consist in
the construction of big networks including multiple species, but this in turn poses challenging computational
problems, due to the scalability limitations of existing algorithms and the main memory requirements induced by the
construction of big networks. Distributed computation or the usage of big computers could in principle respond to
these issues, but raises further algorithmic problems and require resources not satisfiable with simple off-the-shelf
computers.

Results: We propose a novel framework for scalable network-based learning of multi-species protein functions based
on both a local implementation of existing algorithms and the adoption of innovative technologies: we solve “locally”
the AFP problem, by designing “vertex-centric” implementations of network-based algorithms, but we do not give up
thinking “globally” by exploiting the overall topology of the network. This is made possible by the adoption of
secondary memory-based technologies that allow the efficient use of the large memory available on disks, thus
overcoming the main memory limitations of modern off-the-shelf computers. This approach has been applied to the
analysis of a large multi-species network including more than 300 species of bacteria and to a network with more
than 200,000 proteins belonging to 13 Eukaryotic species. To our knowledge this is the first work where
secondary-memory based network analysis has been applied to multi-species function prediction using biological
networks with hundreds of thousands of proteins.

Conclusions: The combination of these algorithmic and technological approaches makes feasible the analysis of
large multi-species networks using ordinary computers with limited speed and primary memory, and in perspective
could enable the analysis of huge networks (e.g. the whole proteomes available in SwissProt), using well-equipped
stand-alone machines.

Keywords: Biomolecular networks, Big data analysis, Network-based learning

*Correspondence: valentini@di.unimi.it
†Equal Contributors
AnacletoLab - Department of Computer Science, University of Milano, Via
Comelico 39/41, 20135 Milano, Italy

© 2014 Mesiti et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto: valentini@di.unimi.it
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Mesiti et al. GigaScience 2014, 3:5 Page 2 of 14
http://www.gigasciencejournal.com/content/3/1/5

Background
In recent years many efforts have been devoted to
build automated tools for large scale automated function
prediction of proteins (AFP) exploiting the knowledge
generated by high throughput biotechnologies [1,2]. As
highlighted by a recent international challenge for the
critical assessment of automated function prediction [3],
scalability and heterogeneity of the available data repre-
sent two of the main challenges posed by AFP. Indeed
on the one hand no single experimental method can fully
characterize the multiplicity of the protein functions, and
on the other hand the huge amount of data to be processed
poses serious computational problems. The complexity of
the problem is furthermore exacerbated by the different
level of the functional annotation coverage in different
organisms, thus making very difficult the effective transfer
of the available functional knowledge from one organism
to another.
Computational automated function prediction approaches

can be useful for the integration of diverse types of data
coming from multiple, often unrelated, proteomic and
genomic pipelines. A recent example is represented by
the Integrative multi-species prediction (IMP) web server
[4] which integrates prior knowledge and data collections
from multiple organisms for the generation of novel func-
tional working hypotheses used in experimental follow-
up. Despite its undoubted usefulness, IMP actually covers
only seven model organisms, preventing its application to
the prediction of the functions of proteins belonging to
the proteomes of poorly annotated organisms.
Another popular approach for gene functional annota-

tion transfer between species relies on the availability of
a collection of orthology relationships across interspecies
proteins, and on the usage of an evolutionary relationships
network as a suitable medium for transferring functional
annotations to the proteins of poorly annotated organisms
[5]. Even if orthology is an evolutionary concept, rather
than a functional one, it can be used to link functionally
equivalent genes across genomes and enables the func-
tional inference of unknown proteins using one or more
functionally characterized orthologs in other species [6,7].
As noticed in [4], the accuracy of machine-learning

algorithms for AFP tasks is negatively affected by the
sparse coverage of experimental data and by the limited
availability of prior functional knowledge. Consequently,
these methods are often applied only to biological pro-
cesses and pathways that are already well characterized for
an organism. The construction of large scale multi species
networks can be a solution to this problem. Following this
approach, network based learning algorithms might ben-
efit of the availability of a priori functional knowledge
coming fromwell annotated species to effectively perform
a functional transfer to the proteins of poorly annotated
organisms.

Unfortunately this solution is only apparently simple,
since the application of classical graph-based algorithms
such as the ones based on random walks [8] or label
propagation methods [9,10] are often unfeasible with
large multi-species networks, especially when only single
off-the-shelf machines are available. These approaches,
indeed, usually rely on an in-memory adjacency matrix
representation of the graph network, scale poorly with the
size of the graph [11], and may have time complexity that
becomes quickly prohibitive. Performance optimization
is usually realized by adopting an adjacency-list repre-
sentation of the graph to take its sparsity into account,
or by using parallel strategies for matrix multiplication
[12]. However, when the size of the graph becomes so
high that is not possible to maintain it entirely in primary
memory, either approaches based on parallel distributed
computation [13-15], or secondary memory-based com-
putation [16-18] can be considered. With distributed
computation techniques, the graph is spread on different
machines and the results are finally collected. However,
as outlined in [16], a key issue of these approaches is
the need to identify a cut of the graph in order to mini-
mize the communication overhead among machines and
their synchronization activities.With secondary memory-
based computation, the graph is stored on the disk of a
single machine and only limited portions of the graph are
loaded in primary memory for computation. In this way, it
is possible to overcome the lack of enough primary mem-
ory. The use of smart strategies for caching the portions
of graph needed for computation [19], the minimization
of the number of accesses to secondary memory [20],
and the usage of compressed data structures for main-
taining the graph in primary memory [21] are the main
challenges for making the management of large graph net-
works in off-the-shelf machines comparable to distributed
approaches.
In this work we propose a novel framework for scal-

able semi-supervised network-based learning of multi-
species protein functions: on the one hand we adopt a
“local learning strategy” to implement classical graph-
based algorithms for protein function prediction, and on
the other hand we apply secondary memory-based tech-
nologies to exploit the large disks available in ordinary
off-the-shelf computers. The combination of these algo-
rithmic and technological approaches makes feasible the
analysis of large multi-species networks in ordinary com-
puters with limited speed and primary memory and in
perspective could enable the analysis of huge networks
(e.g. the whole proteomes available in SwissProt), using
well-equipped stand-alone machines.
Only very recently a paper has been devoted to the

application of graph database technologies in bioinfor-
matics [22], and to our knowledge this is the first work
where secondary-memory based network analysis has

Mesiti et al. GigaScience 2014, 3:5 Page 3 of 14
http://www.gigasciencejournal.com/content/3/1/5

been applied to multi-species function prediction using
big biological networks with hundreds of thousands of
proteins.
This paper is organized as follows. In the next section

we introduce our proposed approach based on the local
implementation of network-based algorithms and sec-
ondary memory-based computation for the multi-species
AFP problem. In particular we discuss the characteristics
of Neo4j, a database technology for graph querying and
processing, and GraphChi, a disk-based system for graph
processing. Then, we show their application to a multi-
species network involving proteins of about 300 bacteria
species, and to a network including 13 species of Eukary-
otes with more than 200.000 proteins, using off-the-shelf
notebook and desktop computers.

Methods
Our approach to big-graph analysis for AFP leverages on
both a novel computational model for network analysis
and on novel technologies for fast and efficient secondary
memory-based computation. More precisely we adopt at
the same time two strategies for scalable network-based
learning of protein function:

1. Local Implementation of network-based algorithms.
To solve the overall AFP problem we adopt a local
learning strategy, according to a “vertex-centric”
computational model.

2. Secondary memory-based computation. We exploit
novel technologies for fast and efficient
secondary-memory access: the overall graph is
maintained on disk and only small parts of it are
loaded each time into primary memory.

It is worth noting that we do not propose novel algo-
rithms, but simply their “local implementation”, accord-
ing to a vertex-centric programming model, necessary
for secondary memory-based computation [14]. Indeed
the strength of the proposed approach consists precisely
in coupling a “local” vertex-centric implementation of
network-based algorithms with technologies based on
secondary memory, to make efficient the local access to
graphs stored on disk, thus also allowing the processing
of big biological networks when limited RAM memory is
available.

Local implementation of network-based algorithms
The most effective network-based algorithms for AFP
learn by exploiting the overall topology of the net-
works [23-25], and their implementation usually requires
to process in primary memory a large part or the overall
underlying graph. The main drawback of this implemen-
tation is that big networks cannot be entirely loaded into
primary memory using off-the-shelf machines.

We aim at providing local implementations of “global”
network algorithms by iteratively processing only one
vertex and its incident edges at a time. In other words
we do not reject to think “globally” by exploiting the
overall topology of the network, but at the same time
we solve “locally” by designing implementations of
these algorithms through a vertex-centric programming
model [14,26].
As an example, we consider the local implementation

of the “vanilla” random walk (RW) algorithm [8], a pop-
ular network-based method just successfully applied to
AFP [24]. It is worth noting that the RW algorithm is
“global”, in the sense that it may exploit the global topol-
ogy of the graph, but it is also intrinsically local, since
at each step each vertex can be processed considering
only its direct neighbours. From this standpoint its local
implementation is straightforward, since it is sufficient to
iteratively process each vertex, its edges and its directly
connected vertices to obtain a “vertex-centric” implemen-
tation of the algorithm. Other algorithms that can process
the adjacency matrix of a graph row by row (e.g., label
propagation algorithms [9]) can be easily implemented
according to a vertex-centric programmingmodel and can
benefit from disk-based approaches. More in general the
proposed approach can be extended to any other network-
based method for which a local implementation can be
provided.

Basic notation
Having a graph G =< V ,E >, representing a func-
tional network, where the vertices V correspond to
proteins, and edges E to functional relationships between
proteins, we indicate proteins with integers, i.e. V =
{1, 2, . . . , n}, where n = |V | is the number of ver-
tices/proteins, and edges (i, j) ∈ E represent functional
relationships between vertices i, j ∈ V . The weights
wij ∈ R associated with edges (i, j) represent the “strength”
of their functional relationships and are elements of the
symmetric weight matrix W . C ⊂ V indicates the pro-
teins belonging to a functional class c (e.g., a specific Gene
Ontology (GO) term [27]).

Local implementation of randomwalks
Random walk (RW) algorithms [8] explore and exploit
the topology of the functional network, starting and walk-
ing around from a subset C ⊂ V of nodes belonging to
a specific class c by using a transition probability matrix
Q = D−1W , where D is a diagonal matrix with diagonal
elements dii = ∑

j wij. The elements qij ofQ represent the
probability of a random step from i to j.
The probability to start the walk can be set to po = 1/|C|

for the nodes i ∈ C and to po = 0 for the proteins i ∈ V \C.
If pt represents the probability vector of finding a “random
walker” at step t in the nodes i ∈ V (that is, pti represents

Mesiti et al. GigaScience 2014, 3:5 Page 4 of 14
http://www.gigasciencejournal.com/content/3/1/5

the probability for a random walk of reaching node i at
step t), then the probability at step t + 1 is:

pt+1 = QTpt (1)

and the update (1) is iterated until convergence or until a
finite number of steps is reached.
From a “vertex-centric” standpoint the update rule (1)

of the RW algorithm becomes:

pt+1
i = Qi · pt (2)

where pi is the probability of the ith node, and Qi repre-
sents the ith column of the probability transition matrixQ.
By recalling thatW represents the original weighted adja-
cency matrix of the graph and Wi its ith column, from (2)
we obtain:

pt+1
i = D−1 · Wi · pt =

n∑

j=1
d−1
jj wji ptj (3)

Equation (3) is the update rule of the random walk
resolved at the ith node of the graph, and can be viewed as
a “local” version of (1): by updating all the nodes i of the
graph, 1 ≤ i ≤ n, we update the probability vector pt+1

exactly in the same way of (1). To compute (3) we need the
following information:

1. d−1
jj = 1∑

i wji
(i.e., the inverse of the sum of weights of

the edges coming from j)
2. wji, 1 ≤ j ≤ n (i.e., the weights of the inedges of i)
3. ptj , 1 ≤ j ≤ n (i.e., the probabilities of node j at the

previous step).

We can observe the following facts:

a) If the graph is undirected (and this is the case for the
AFP problem), the weights of incoming and
outcoming edges are the same, that is ∀i,∀j wij = wji.
This implies that only the list of edge weights
outcoming from i: L(i) = {wij|wij > 0} should be
stored. This in turn implies that in sparse graphs the
spatial (and temporal) complexity at each node is
sublinear, and (3) can be expressed as:

pt+1
i =

∑

j∈N(i)
d−1
jj wji ptj (4)

where N(i) = {j|j ∈ V ∧ (i, j) ∈ E} are the
neighborhood vertices of i.

b) We need to store ptj , and pt+1
j , 1 ≤ j ≤ n, that is the

probabilities at the current and previous step. Once a
step is completed, the current probabilities (pt+1

j) can
be used as starting probabilities for the next iteration.

c) We can store d−1
jj , 1 ≤ j ≤ n, as a value associated to

each node j. It could be computed at each node j as a
pre-processing step: d−1

jj = 1∑
i wji

.

d) The algorithm iterates for a predefined number of
steps or until convergence.

e) It is easy to see from (3) that the complexity of each
iteration of the algorithm isO(n2), but with sparse
graphs, i.e. when ∀i, |{(j, i)|wji > 0}| << n, the
complexity isO(n).

Secondary memory-based computation
To be actually applicable to real-world big networks,
the local implementations of the algorithm described
in Section “Local implementation of network-based
algorithms” require specific technologies for an efficient
access to the secondary memory: indeed we need to effi-
ciently load small parts of a graph, update them in primary
memory and finally store them back to disk.
To this end we experimented with two different sec-

ondary memory-based technologies. The first one is
based on graph DB technologies [28], and the second
one on efficient technologies for disk-based processing of
graphs.

Neo4j: a DB technology for graph querying and processing
Neo4j [17] is a data management system written in Java
based on the graph data model. Nodes, relationships and
their properties are first class citizen in the model and
their storage on disk is optimized by the adoption of
specific data structures for graph networks. The Neo4j
Kernel is a fast graph engine with the main characteristics
expected by a DBMS, like recovery, management of trans-
actions and indexing structures. Neo4j can be used both
as an embedded database within a Java application and
as a standalone server with an extensive REST interface
for easy integration with Web applications. A declarative
query language, named cypher, for the specification of
SQL-style queries is provided.
Internally, Neo4j stores graph data spread across a num-

ber of files. Each store file contains the data for a specific
part of the graph (e.g. nodes, relationships, properties)
and their overall organization, which entails the separa-
tion of graph structure from property data, allows the
efficient traversal of the graph and the generation of query
answers. Both nodes, relationships and properties have a
fixed size representation (e.g. nodes have a fixed dimen-
sion of 9 bytes), and relationships are implemented using
doubly linked lists on disk in order to render efficient their
traversal. The fixed-size representation of nodes, relation-
ships and properties has the advantage that identifiers
should not be stored (corresponds to the file offset) and
that their retrieval by means of their identifiers can be
done in constant time.
Since this information is stored in secondary memory,

its access is made efficient through the use of caching
techniques. At file system level, each store file is divided
in equally sized regions and these regions are cached.

Mesiti et al. GigaScience 2014, 3:5 Page 5 of 14
http://www.gigasciencejournal.com/content/3/1/5

The cache holds a fixed number of regions for each file,
and regions are replaced relying on a least frequently
used (LFU)-like policy. On top of this mechanism, a more
specific node/relationship cache has been implemented
that is optimized for traversal (for example, relationships
of a node are organized relying on their type and their
direction).
In Neo4j the functional network G used for AFP has

been implemented as follows. Each node representing a
protein i is associated with the properties name, d (i.e.
1/

∑
j wij), p1 and p2 (i.e. the probability of the protein

at the previous and current step). Moreover, between two
proteins i and j a relationship of type SIM is specified
with a property wij containing the strength of their func-
tional relationship. The graph has been enhanced with
nodes representing the functional classes (with name and
count properties, i.e. the name of the class and the num-
ber of proteins belonging to the class) and relationships
of type CLASS, that represent the classes to which a pro-
tein belongs to. Figure 1 reports a simple example of the
graph with 10 bacteria proteins and two GO terms with
their relationships. For the sake of simplicity, the values of
p1 and p2 are not reported.
Even if the RW algorithm described in Section “Local

implementation of network-based algorithms” has been
implemented in Java with the embedded version of Neo4j,
it can be easily expressed through the cypher language.
This declarative query language allows the expression of
the core definition of the “vanilla” RW with a single sim-
ple statement (Figure 2). More precisely, starting from a
generic protein i and a function class named c, the cypher
implementation identifies the proteins j for which a rela-
tionship of type SIM exists with i and such that j is of class
c. Then, the probability i.p2 (at time t + 1) is obtained by
using the value j.d and j.p1 (the probability computed at

time t). Finally the statement returns the name of protein
i, the name of the class c, and the computed probability
i.p2 (Figure 2).

GraphChi: a disk-based system for graph processing
GraphChi is a disk-based system for the analysis of big
graphs on single off-the-shelf computers [16]. Differently
from Neo4j, GraphChi has not been conceived for query-
ing large graph-structured databases, but for efficiently
processing graphs stored in secondary memory. To this
end it implements specialized data structures to effi-
ciently break large graphs into small parts that can be
quickly loaded into primary memory, and provides effi-
cient disk I/O operations to reduce the number of non
sequential accesses to disk. Moreover, it offers an asyn-
chronous model of computation that directly supports the
vertex-centric programming model.
GraphChi requires enough primary memory to contain

the edges and their associated values of only a relatively
small subset of vertices at a time, while the rest of the
graph is efficiently stored on disk. More precisely, the ver-
tices of the graph are split in K intervals, and each interval
is associated to a shard which stores all the inedges for
the vertices in the interval itself (Figure 3a). Note that
the inedges are sorted by their source vertex. The dimen-
sions of the intervals are chosen in such a way that the
corresponding shards can be entirely loaded into pri-
mary memory: hence all the inedges are available for
the vertices in the interval. Moreover, the outedges can
be efficiently loaded requiring at most K non sequential
disk-reads, through the mechanism of the Parallel Sliding
Windows (PSW): by exploiting the ordering of the edges
with respect to the source vertices, when PSW moves
from an interval to the next, it “slides” a window over each
of the shards (Figure 3b).

Figure 1 A sample Neo4j net. A graphical representation of a sample Neo4j net.

Mesiti et al. GigaScience 2014, 3:5 Page 6 of 14
http://www.gigasciencejournal.com/content/3/1/5

Figure 2 Neo4j Implementation of 1-step RW algorithm in cypher. The notation (i)-[e:rtype]->(j) is used to represent a relationship e
of type rtype between nodes i and j. The dot-notation is used to access a single property of a node/edge.

Schematically, the execution flow of GraphChi can be
summarized in an iterative cycle, repeated across each
interval of vertices:

1. Read : select an interval and load in primary memory
its inedges stored in the associated shard (the
“memory shard”). Through at most K non sequential
reads load its outedges.

2. Execute: perform a parallel update of vertices and
edges of the memory shard through multi-thread
asynchronous computation in primary memory.

3. Write: The updated vertices and edges are written
back to disk.

Note that the mechanism of Parallel Sliding Windows
requires at most K2 non sequential reads/writes on disk
for a full visit of the entire graph (K reads/writes for each
interval), thus resulting in a very efficient management of
primary and secondary memory [16].
The GraphChi implementation of the RW algorithm

requires a data structure for representing a vertex con-
taining the same properties specified for the Neo4J imple-
mentation (namely, d, p1 and p2 – Section “Neo4j: a DB

technology for graph querying and processing”). More-
over, a weight is associated with each edge e (referred to as
e.wij). Figure 4 reports the pseudo-code of the 1-step RW
vertex-centric implementation, including the start and the
update functions, that specify the actions to perform on a
vertex i during the first and the succeeding update iter-
ations. In the start function each vertex is initialized
with the value of d and the initial probability p1. In the
update function the probability of the 1-step RW algo-
rithm is determined by simply applying eq. 4. By means of
the GraphChi execution engine, these functions are auto-
matically applied to all the vertices of the graph, according
to a multi-thread and asynchronous mode of computa-
tion. This implementation can be easily extended to an
arbitrary number of steps by modifying the update func-
tion in order to read previous probabilities from p1 during
the odd iterations and from p2 during the even iterations
(and writing the current probability in the other variable).
The C++ implementation of this algorithm inGraphChi

entails to keep in main memory a global vector contain-
ing a copy of the data structures for each vertex v ∈ V .
Indeed, during the execution of the update function, it

Figure 3 Efficient disk access with GraphChi. (a) Shards: Int1, . . . IntK refer to the K intervals in which the vertices are split, while S1, . . . SK to the
corresponding shards (b) Parallel Sliding Windows.

Mesiti et al. GigaScience 2014, 3:5 Page 7 of 14
http://www.gigasciencejournal.com/content/3/1/5

Figure 4 Pseudocode of the GraphChi vertex-centric
implementation of the 1-step RW algorithm.

is only possible to access the identifier of the neighbour
vertex j contained in the data structure representing the
edge e, but not its associated probability j.p1 and j.d val-
ues, necessary for the computation of the probability i.p2
(Figure 4). Therefore, the global vector in main memory is
used just to access this information. We remark that this
solution makes our implementation even faster and feasi-
ble in our AFP context, since the number of vertices is by
far smaller than the number of edges, and thus there is no
risk of running out ofmemory also with off-the-shelf com-
puters, even for very large biological networks involving
hundreds of thousands or even millions of proteins.

Analyses
We applied our methods based on the local imple-
mentation of network-based algorithms and secondary
memory-based computation to the multi-species pro-
tein function prediction in bacteria and eukarya. In the
remainder of the section we summarize the experimen-
tal set-up and the characteristics of the data, and then
we compare the empirical computational time required by
secondary and primary memory-based implementations
of network based algorithms for AFP.

Data description and experimental set-up
We applied our methods to two multi-species networks
of proteins: the first one (Bacteria-net, Section “Bacteria-
net”) accounts 301 species of bacteria, and the second

one (Eukarya-net, Section “Eukarya-net”) includes the
proteomes of 13 Eukaryotic species.

Bacteria-net
We constructed a multi-species bacteria network
(Bacteria-net), using the proteins proposed as part of a
large scale experiment for a recent international chal-
lenge aimed at the evaluation of gene function prediction
methods (CAFA2: [29]).
The CAFA2 bacteria proteins belong to 10 species

(Table 1) and amount to 15,451.We added to this set other
2,187 bacteria proteins having at least one experimental
GO annotation in the Uniprot knowledgebase/Swissprot
(release: May 2013), but coming from organisms not con-
sidered in the CAFA2 challengea, for a total of 17,638
bacteria proteins belonging to 301 different species.
Figure 5 sketches the main steps for the construction of

the net of bacteria proteins. At first, we have collected data
from the different databases reported in Table 2 to obtain
different profiles for each protein. More precisely, each
protein has been associated to a binary feature vector, rep-
resenting a protein profile, whose elements are 1 when the
protein is annotated for a specific feature (e.g. includes a
specific domain, or a specific motif), or 0 otherwise (sec-
ond phase in Figure 5). The protein profiles have then
been used to construct a set of similarity networks (one for
each data type) with edge scores based on the computa-
tion of the classical Jaccard similarity coefficient between
each possible pair of protein profiles, thus obtaining 8
protein networks. Then we constructed two additional
networks by computing the hierarchical Jaccard similar-
ities between the Molecular Function (MF) and Cellular
Component (CC) profiles associated to each protein and
populated only with the experimentally supported GO
annotations previously extracted from Swissprot (May
2013). The hierarchical Jaccard index is computed in the

Table 1 CAFA2 bacteria species and their proteins
available in Swissprot (May 2013)

ID. Species n. proteins

83333 Escherichia coli 4431

224308 Bacillus subtilis 4188

99287 Salmonella typhimurium 1771

208964 Pseudomonas aeruginosa 1245

321314 Salmonella enterica choleraesuis 882

160488 Pseudomonas putida 693

223283 Pseudomonas syringae 675

85962 Helicobacter pylori 581

170187 Streptococcus pneumoniae 502

243273 Mycoplasma genitalium 483

The first column reports the SwissProt organism identifier, the last one the
number of proteins.

Mesiti et al. GigaScience 2014, 3:5 Page 8 of 14
http://www.gigasciencejournal.com/content/3/1/5

Figure 5 Construction of bacteria net. Data flows from different sources of information, construction of the data-type specific networks and
networks integration.

same way of the classical Jaccard, but the components of
the vector (the GO terms) are weighted according to their
distance from the leaves: GO terms corresponding to the
leaves have weight w = 1, those at distance d = 1 weight
w = 1/2, and more in general nodes at distance d have
weight w = 1

d+1 . In this way we put more emphasis on
the most specific annotations, and two proteins annotated
with the same more specific terms receive a similarity
score larger than that obtained by two proteins annotated
with less specific GO terms.
The 10 protein networks constructed according to the

previously described steps have been integrated in an
unique “consensus” network using the Unweighted Aver-
age (UA) network integration scheme [37]: the weight of
each edge is computed by simply averaging across the

Table 2 Public databases exploited for the construction of
protein profiles

Database Description

Pfam [30] Protein domain

Protein superfamilies [31] Structural and functional annotations

PRINTS [32] Motif fingerprints

PROSITE [33] Protein domains and families

InterPro [34] Integrated resource of protein families,
domains and functional sites

EggNOG [35] Evolutionary genealogy of genes: Non-
supervised Orthologous Groups

SMART [36] Simple Modular Architecture Research
Tool (database annotations)

Swissprot Manually curated keywords describing
the function of the proteins

at different degrees of abstraction

available n networks, and “missing data”, i.e. pairs of ver-
tices i, j not present in a given network, result in a weight
wij = 0:

w̄ij = 1
n

n∑

d=1
wd
ij (5)

where w̄ij is the weight of the integrated network and wd
ij

represents the weight associated to the edge (i, j) of the dth
network (final phase of Figure 5).
As class labels for the proteins included in our inte-

grated network we used the Gene Ontology Biological
process (BP) experimental annotations extracted from
Swissprot (May 2013). To ensure the availability of a
reasonable amount of vertices from which to start the
exploration of the direct and indirect neighborhood in the
integrated protein network, we discarded all the GO BP
classes with less than 20 annotated proteins, and this led
to a final set of 381 GO terms with an amount of positives
varying from 21 to 2,000 (Table 3).
The performance of the considered methods have been

quantified both in terms of area under the receiving
operating curve (AUC) and precision at different recall
levels in a standard 5 folds stratified cross validation
scheme. We compared the execution times required for

Table 3 Summary of the distribution of the number of
positives across the 381 GO BP classes involved in the
functional labelling of the 17638 proteins comprised in
the bacterial multi species protein network

Min. 1st Qu. Median Mean 3rd Qu. Max.

21.0 31.0 53.0 135.4 131.0 2000.0

Mesiti et al. GigaScience 2014, 3:5 Page 9 of 14
http://www.gigasciencejournal.com/content/3/1/5

the completion of each ranking task in primary memory
(on a machine with 16 Gb of RAM) and in secondary
memory (on two machines with 16 and 4 Gb of RAM).
The machine with 16 Gb of RAM has been equipped with
an i7 Intel core processor with 8 cores at 2.80 GHz, while
the 4 Gb machine with an Intel i7 core processor with 4
cores at 1.90 GHz (both have been equipped with off-the-
shelf ATA hard disk drives). Both the machines run an
Ubuntu 12.04 Linux operating system.

Eukarya-net
In order to test the ability of the proposed local methods
to scale to large multi-species networks, we constructed
a second network (hereafter referred to as Eukarya-net).
Instead of considering different types of data, as we
did in the construction of Bacteria-net, all the proteins
interactions composing Eukarya-net were downloaded
in precomputed form from the STRING protein-protein
interactions database. STRING [38] is a collection of net-
works composed by real and predicted protein-protein
interactions (based on genetic data, physical data and lit-
erature data) and aims at providing a global view of all
the available interaction data, including lower-quality data
and/or computational predictions for as many organisms
as feasible [39]. Since version 7, STRING adopted a two-
layered approach when accommodating fully sequenced
genomes: importantmodel organisms and those for which
experimental data are available from the “core genomes”,
while all the other genomes represent the “periphery” [40].
Starting from the STRING interaction data (version 9.05),
we selected all the Eukaryotic species in the core region
of STRING having 10,000 or more proteins. Our choice is
motivated by the expected high quality of the interactions
coming from the core region of STRING. The selected
Eukaryotic species are listed in Table 4.
This network includes proteins coming from 2 inver-

tebrates (a lancelet of the genus Branchiostoma and the
fruit fly), 3 plants (Arabidopsis thaliana, the rice Oryza
sativa and the moss Physcomitrella patens), and 8 ver-
tebrates including a frog, the chicken and 6 mammals.
The total number of proteins in Eukarya-net is 202,442.
This basic version of Eukarya-net is obtained by extract-
ing from STRING all the interactions occurring between
proteins of the selected core species. This led to an initial
collection of 25,132,538 interactions. A simple connected
components analysis revealed that this network is com-
posed by 666 connected components of which only 13
composed by more than 30 vertices (and corresponding
to the biggest connected components of the networks
associated to each species). This “big” network is thus a
collection of the protein networks of the selected species.
In order to find a way to “connect” the core components,
we extracted all the clusters of orthologous genes from the
STRING website according to the following steps:

Table 4 Selected species from the core region of the
STRING protein networks database

NCBI taxon ID. Species n. proteins

3218 Physcomitrella patens 10352

3702 Arabidopsis thaliana 23576

7227 Drosophilamelanogaster 12845

7739 Branchiostoma floridae 16418

8364 Xenopus (Silurana) tropicalis 13678

9031 Gallus gallus 13119

9258 Ornithorhynchus anatinus 13333

9606 Homo sapiens 20140

9615 Canis lupus familiaris 16912

10090 Musmusculus 20023

13616 Monodelphis domestica 15409

39947 Oryza sativa Japonica 13330

69293 Gasterosteus aculeatus 13307

Each species is represented by at least 10000 proteins.

• the cluster of orthologs ID obtained by the STRING
team using the eggNOG database (we considered
only clusters of type NOG: non-supervised
orthologous groups);

• the filtering of each NOG cluster in order to remove
the proteins not coming from the selected core
species. Note that some NOGs are composed by
more than 2,000 proteins, but after our filtering
procedure each selected NOG is composed by no
more than 10 proteins.

After these steps, we selected all the NOGs in which
the number of proteins equals the number of species (i.e.
NOG composed by 10 proteins coming from 10 species,
NOG composed by 9 proteins coming from 9 species,
and so on). We finally constructed an enriched version
of the basic Eukarya-net network simply by including in
Eukarya-net all the possible edges linking the members
of the selected set of NOGs. Following this strategy we
obtained a network composed by 25,155,631 edges (net-
work density: 0.000613). In order to verify the impact of
the additional 23,093 NOGs based edges on the connec-
tivity of Eukarya-net, we repeated the connected compo-
nents analysis and we found that this “NOGs augmented”
version of Eukarya-net is composed by 552 connected
components of which two (190,755 nodes (94.22%) and
10,233 (5.05%)) account for more than 99% of the 202,442
proteins composing the network.
As class labels for the proteins included in Eukarya-net

we used the GO annotations available in STRING (ver-
sion 9.05). The STRING website provides flat text files
containing a mapping from GO annotations to STRING
proteins and a STRING internal confidence score for each

Mesiti et al. GigaScience 2014, 3:5 Page 10 of 14
http://www.gigasciencejournal.com/content/3/1/5

GOannotation, ranging from 1 (low confidence) to 5 (high
confidence). While extracting the GO labels we consid-
ered only the annotations with confidence score 5. We
then filtered out all the GO terms associated with less than
20 and more than 100 proteins (473 GO terms). We finally
randomly selected from this set 50 GO terms irrespective
of their GO division (Molecular function, Biological pro-
cess and Cellular component). We then repeated all the
test performed on Bacteria-net on the bigger Eukarya-net
network.

Results and discussion
We compared the runtime required by main mem-
ory and secondary memory-based implementations
(Section “Secondary memory-based computation”) of the
RW algorithm described in Section “Local implementation
of network-based algorithms”. Moreover, even if our main
aim consists in showing that the combination of local
implementation and secondary memory-based computa-
tion allows the analysis of big biological networks on small
computers, we performed also a comparison of the per-
formance achieved with single-species and multi-species
networks of bacteria proteins to experimentally assess the
impact of a multi-species approach to the prediction of
protein functions.

Results with bacteria-net
Table 5 shows the average per term runtime required
to complete a 5-fold cross-validation on the Bacteria-
net (17,638 nodes/proteins and more than 7 millions of
edges). We considered 381 GO BP terms characterized by
more than 20 annotations and involving 301 species of
bacteria. (see Section “Bacteria-net” for details).
Results on the desktop computer (16 Gb RAMmachine)

show that the computational time required by the sec-
ondary memory based implementations, even if larger,
is of the same order of magnitude of the time needed
by the main-memory-based implementation. In partic-
ular, quite surprisingly, the empirical time complexity
of the GraphChi implementation is very close to that
of the the main-memory version. This fact can be par-
tially explained by the very efficient secondary memory
access of GraphChi, but above all by the characteristics of
the main-memory implementation of the RW algorithm.

Even if the efficient BLAS-based fortran subroutines
for linear algebra are used for the classical stochastic
matrix/probability vector product (eq. 1), the sparsity of
the Bacteria-net network is not adequately exploited.
The results of the main-memory algorithm with the

notebook (4 Gb RAMmachine) are not reported since on
this task the main memory implementation of the algo-
rithm fails, due to disk trashing, by which processor time
is mainly used to continuously swap from main mem-
ory and the virtual memory on disk. On the contrary, the
GraphChi implementation results only in a small incre-
ment of the computational time, mainly due to the larger
time required to construct the shards when less RAM
memory is available (Section “GraphChi: a disk-based
system for graph processing”) and to the lower speed of
the processor in the notebook machine.
Note that with the smaller machine the empirical com-

putational time required by Neo4j increases of about one
order of magnitude, while the GraphChi implementation
introduces only a small increment of the required execu-
tion time (Table 5). This is particularly relevant when we
consider the overall computational time required to pre-
dict the 381 GO terms: with the “small” machine Neo4j
moves from about 3 hours to about one day with the 1-
step RW, and from about 7 hours to almost 3 days with the
3-steps RW.
Even if the main aim of this work consists in show-

ing that secondary-memory based technologies allow us
to analyse large multi-species networks also with “rela-
tively small” stand-alone computers, we report also the
average AUC, and precision at 20 and 40% recall across
the considered 381 GO BP terms. Table 6 shows that RW
algorithms achieve reasonable results (AUC is always sig-
nificantly larger than 0.5). In particular 1-step RW obtains
the best results in terms of both AUC and P20R and P40R:
on the average, the direct neighbours of each node seem
to be the most informative.

Results with Eukarya-net
Table 7 summarizes the average per-term runtime
required to complete a 5-fold cross validation with the
Eukarya-net involving more than 200,000 proteins of 13
multi-cellular eukarya organisms (Section “Eukarya-net”).
The spatial requirements induced by Eukarya-net

Table 5 Empirical time complexity of themain and secondarymemory-based implementations of network based
algorithms for multi-species function prediction with the Bacteria-net

16 Gb RAMmachine 4 Gb RAMmachine

Algorithm Mainmem. Neo4j GraphChi Mainmem. Neo4j GraphChi

RW - 1 step 8.11s 27.92s 8.84s – 208.27s 12.32s

RW - 2 steps 16.05s 54.36s 16.98s – 408.57s 25.06s

RW - 3 steps 23.95s 81.18s 25.12s – 621.92s 36.51s

Mesiti et al. GigaScience 2014, 3:5 Page 11 of 14
http://www.gigasciencejournal.com/content/3/1/5

Table 6 Bacteria-net: average AUC, precision at 20% recall
(P20R) and precision at 40% recall across 381 GO BP terms
estimated through 5-fold cross-validation

Algorithm AUC P20R P40R

RW - 1 step 0.8744 0.2264 0.1673

RW - 2 steps 0.8590 0.1318 0.0893

RW - 3 steps 0.8419 0.1064 0.0713

prevents the application of the main memory imple-
mentation also with the 16 Gb RAM machine, while
secondary memory-based implementations make this
task feasible also with this large protein network.
It is worth noting that in this task involving a bigger net,

the GrapChi implementation is significantly faster than
the Neo4j implementation (Table 7). Moreover, the aver-
age computational time is in practice the same when the
4 Gb and the 16 Gb RAM machines run the GrapChi
implementation of the RW algorithm, while we observe a
relevant increment in computational time with Neo4j, as
previously observed also with Bacteria-net.
The performance in terms of the average precision at

fixed recall levels obtained in this test are relatively low,
especially when compared with the high average AUC
obtained with the RW at 1, 2 and 3 steps (Table 8). The
observed relatively low precision can be explained by tak-
ing into account that it is more negatively affected by class
unbalance and, in the Eukarya-net network task, the pos-
itives are at most 100 while the number of vertices in the
network is 202,442 (i.e. the positives are less than 0.05% of
the vertices at best).
Note that in this case the 2-steps RW achieves the best

AUC results: it is likely that these results could be due by
the eggNOG orthology relationships added between the
single-species disconnected components in Eukarya-net
(Section “Eukarya-net”). Indeed in this way the annota-
tions for a certain species can be propagated to other
philogenetically related species by exploiting the orthol-
ogy relationships.

Experimental comparison betweenmulti-species and
single-species approaches
In this section we provide an experimental comparison
between multi-species and single-species approaches to

Table 7 Eukarya-net: Average per-term empirical time
complexity between Neo4j and GraphChi implementations

16 Gb RAMmachine 4 Gb RAMmachine

Algorithm Neo4j GraphChi Neo4j GraphChi

RW - 1 step 189.60s 20.44s 2520.00s 21.46s

RW - 2 steps 367.82s 31.68s 4919.35s 33.19s

RW - 3 steps 549.84s 45.73s 7333.10s 46.69s

Table 8 Eukarya-net: average AUC, precision at 20% recall
(P20R) and precision at 40% recall across 50 GO terms
estimated through 5-fold cross-validation

Algorithm AUC P20R P40R

RW - 1 step 0.8601 0.1449 0.0943

RW - 2 steps 0.9667 0.1329 0.0929

RW - 3 steps 0.9598 0.0927 0.0785

AFP. We repeated the same AFP task performed with
Bacteria-net but considering this time each species sep-
arately. More precisely, we constructed a separate net
for each species of Bacteria, using exactly the same data
we used for the multi-species net (Section “Bacteria-
net”), and then we predicted the probabilities for each of
the 381 GO terms considered in the multi-species task
(Section “Results with bacteria-net”). Average per-species
results show that the multi-species approach, by exploit-
ing the multi-species network of proteins Bacteria-net,
achieves better results in terms of both AUC, and pre-
cision at a fixed recall rate (Table 9), and the difference
is statistically significant independently of the number of
steps and the performancemeasure considered (Wilcoxon
signed rank test, α = 0.01).
These results can be explained, considering two char-

acteristics of multi-species networks: 1) the number of
nodes and the number of available annotated proteins; 2)
the overall topology of the network.
Indeed in single-species nets either the reduced number

of available proteins or the reduced number of annotated
nodes can negatively affect the generalization capabili-
ties achieved with random walks or any other learning
algorithm, while in multi-species networks, by construc-
tion, more nodes and more annotated proteins from other
species can be available.

Table 9 Comparison of the average AUC, precision at 20%
recall (P20R) and precision at 40% recall between
multi-species and single-species approaches with 301
species of bacteria

Multi-species approach

Algorithm AUC P20R P40R

RW - 1 step 0.8744 0.2264 0.1673

RW - 2 steps 0.8590 0.1318 0.0893

RW - 3 steps 0.8419 0.1064 0.0713

Single-species approach

Algorithm AUC P20R P40R

RW - 1 step 0.8263 0.1801 0.1176

RW - 2 steps 0.8146 0.1059 0.0647

RW - 3 steps 0.8179 0.1009 0.0563

Mesiti et al. GigaScience 2014, 3:5 Page 12 of 14
http://www.gigasciencejournal.com/content/3/1/5

Moreover in single-species networks usually the num-
ber of available functional connections (edges) between
proteins can be reduced (for instance, since no sufficient
data are available) and in many cases we may have highly
disconnected networks, making very difficult the appli-
cation of algorithms based on the propagation of the
information between nodes. On the contrary, in themulti-
species setting learning algorithms can enjoy a richer
network topology by exploring connections not avail-
able in single-species nets: the evolutionary relationships
between species assure that proteins not connected with
other proteins of the same species, can in principle be con-
nected with other homologous proteins in other species,
thus enhancing the propagation of the information across
the multi-species network.
Summarizing, our results show the feasibility of the

“vertex-centric” algorithmic approach coupled with sec-
ondary memory-based technologies to process large
multi-species protein networks with single off-the-shelf
computers. Moreover, our preliminary experiments show
that in perspective we can also improve performances by
constructing large multi-species networks, and by inte-
grating heterogeneous sources of biomolecular and evolu-
tionary information.

Conclusions
Our approach based on local implementations of network-
based algorithms and on novel secondary memory-based
technologies provides a solution to the large main mem-
ory requirements induced by large multi-species protein
networks, thus making possible the analysis of big net-
works using off-the-shelf machines. Our results show
that both graph DB technologies (i.e. Neo4j) and sec-
ondary memory based systems for graph processing
(i.e. GraphChi) can be successfully applied to the anal-
ysis of large multi-species networks, even if the latter
seems to be less sensitive to the amount of available pri-
mary memory, and more efficient for the implementation
of network-based algorithms for AFP. The local imple-
mentation strategy can be applied to other network-based
learning algorithms, ranging e.g. from simple guilt-by-
association methods (that are inherently local) [41,42]
to more complex label propagation methods [9,10], ker-
nelized graph algorithms [25,43,44] and the recently
proposed parametrized Hopfield networks [45], but in
principle any algorithm, that can be expressed according
to a “vertex-centric” programming model, can be adapted
to this framework.
In perspective, by exploiting orthologous genes and

multiple genomic sources, multi-species prediction can
be applied to annotate poorly annotated species and
discover new functions for uncharacterized genes in
model organisms. Indeed our proposed approach allows
computational biologists to experiment with large multi-

species networks using their own notebooks, but in per-
spective applications to huge networks including e.g. the
proteomes available in SwissProt/TrEmbl could be per-
formed using well-equipped stand-alone machines.
Our framework could be also adapted and devised to

other relevant computational biology scenarios character-
ized by the construction and processing of large networks,
such as in the context of the “Network medicine” [46], or
in drug discovery and repositioning problems [47].

Availability of supporting data
The files containing the Bacteria-net and Eukarya-net
along with the files containing the labels used in our
experiments are available from GigaDB [48] http://dx.doi.
org/10.5524/100090. The content and format of each file is
described in readme files available at the aforementioned
database.

Endnote
aFor experimental annotation we considered all the

available associations having GO evidence codes not
included in the following list: IEA, ND, IC, NAS, TAS,
ISS, ISO, ISA, ISM, IGC, IBA, IBD, IKR, IRD and RCA.
A complete list of the GO evidence codes and their
meanings is available at http://www.geneontology.org/
GO.evidence.shtml.

Abbreviations
AFP: Automated function prediction; BP: Biological process; CC: Cellular
component; GO: Gene ontology; MF: Molecular function; RW: Random walk.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MM analyzed the technological items behind secondary memory based
computation and implemented the RW algorithm using Neo4j; MR curated
the biological items of multi-species AFP and implemented the same
algorithm with GraphChi; GV wrote the draft (with the contribution of the
other authors) and implemented the main-memory version of the algorithms.
All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank the reviewers for their useful comments and
suggestions, and acknowledge partial support from the PRIN project “Automi
e linguaggi formali: aspetti matematici e applicativi”, funded by the italian
Ministry of University.

Received: 4 December 2013 Accepted: 1 April 2014
Published: 23 April 2014

References
1. Friedberg I: Automated protein function prediction-the genomic

challenge. Brief Bioinform 2006, 7:225–242.
2. Gillis J, Pavlidis P: Characterizing the state of the art in the

computational assignment of gene function: lessons from the first
critical assessment of functional annotation (CAFA). BMC
Bioinformatics 2013, 14(Suppl 3):S15.

3. Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, Sokolov A, Graim
K, Funk C, Verspoor K, Ben-Hur A, Pandey G, Yunes JM, Talwalkar AS, Repo
S, Souza ML, Piovesan D, Casadio R, Wang Z, Cheng J, Fang H, Gough J,
Koskinen P, Törönen P, Nokso-Koivisto J, Holm L, Cozzetto D, Buchan

http://dx.doi.org/10.5524/100090
http://dx.doi.org/10.5524/100090
http://www.geneontology.org/GO.evidence.shtml
http://www.geneontology.org/GO.evidence.shtml

Mesiti et al. GigaScience 2014, 3:5 Page 13 of 14
http://www.gigasciencejournal.com/content/3/1/5

DWA, Bryson K, Jones DT, Limaye B, et al.: A large-scale evaluation of
computational protein function prediction. Nat Methods 2013,
10(3):221–227.

4. Wong AK, Park CY, Greene CS, Bongo LA, Guan Y, Troyanskaya OG: IMP: a
multi-species functional genomics portal for integration,
visualization and prediction of protein functions and networks.
Nucleic Acids Res 2012, 40(W1):W484—W490.

5. Kuzniar A, van Ham RC, Pongor S, Leunissen JA: The quest for orthologs:
finding the corresponding gene across genomes. Trends Genet 2008,
24(11):539–551.

6. Koonin EV: Orthologs, paralogs, and evolutionary genomics 1. Annu
Rev Genet 2005, 39:309–338.

7. Hamp T, Kassner R, Seemayer S, Vicedo E, Schaefer C, Achten D, Auer F,
Boehm A, Braun T, Hecht M, Heron M, Hönigschmid P, Hopf TA,
Kaufmann S, Kiening M, Krompass D, Landerer C, Mahlich Y, Roos M, Rost
B: Homology-based inference sets the bar high for protein function
prediction. BMC Bioinformatics 2013, 14(Suppl 3):S7.

8. Lovasz L: Randomwalks on graphs: a survey. Combinatorics, Paul Erdos
is Eighty 1993, 2:1–46.

9. Zhou D, Bousquet O, Lal NT, Weston J, Schölkopf B: Learning with local
and global consistency. In Advances in Neural Information Processing
Systems 16. Cambridge: MIT Press; 2004:321–328.

10. Bengio Y, Delalleau O, Le Roux N: Label propagation and quadratic
Criterion. In Semi-Supervised Learning. Edited by Chapelle O, Schölkopf B,
Zien A. Cambridge: MIT Press; 2006:193–216.

11. Liu W, Wang J, Chang SF: Robust and scalable graph-based
Semisupervised learning. Proc IEEE 2012, 100(9):2624–2638.

12. Foster J: Designing and Building Parallel Programs. Boston: Addison Wesley;
1995.

13. Gonzalez JE, Low Y, Gu H, Bickson D, Guestrin C: PowerGraph:
Distributed graph-parallel computation on natural graphs. In
OSDI’12 Proceedings of the 10th USENIX conference on Operating Systems
Design and Implementation. Hollywood, CA: USENIX Association Berkeley;
2012:17–30.

14. Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein JM:
GraphLab: a new parallel framework for machine learning. In
Conference on Uncertainty in Artificial Intelligence (UAI). Catalina Island:
AUAI Press; 2010.

15. Malewicz G, Austern MH, Bik AJC, Dehnert JC, Horn I, Leiser N, Czajkowski
G: Pregel: a system for large-scale graph processing. In Proceedings of
the ACM SIGMOD International Conference onManagement of Data,
SIGMOD 2010. Indianapolis, Indiana, USA, New York: ACM Press;
2010:135–146.

16. Kyrola A, Blelloch G, Guestrin C: GraphChi: large-scale graph
computation on just a PC. In Proceedings of the 10th USENIX conference
on Operating Systems Design and Implementation. CA, USA: Hollywood, CA,
USA, OSDI’12: USENIX Association Berkeley; 2012:31–46.

17. Webber J: A programmatic introduction to Neo4j. In Proceedings of the
3rd Annual Conference on Systems, Programming, and Applications:
Software for Humanity. Tucson: ACM; 2012:217–218.

18. Han WS, Lee S, Park K, Lee JH, Kim MS, Kim J, Yu H: TurboGraph: a fast
parallel graph engine handling billion-scale graphs in a single PC. In
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and DataMining. New York: ACM; 2013:77–85.

19. Robinson I, Webber J: Eifrem E: Graph Databases; 2013.
20. Karedla R, Love J, Wherry B: Caching strategies to improve disk system

performance. Computer 1994, 27:38–46.
21. Boldi P, Vigna S: TheWebGraph framework I: compression

techniques. In In Proc. of the Thirteenth International WorldWideWeb
Conference. New York: ACM Press; 2003:595–601.

22. Have C: Jensen L: Are graph databases ready for bioinformatics?
Bioinformatics 2013, 29(24):3107.

23. Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q: GeneMANIA: a
real-timemultiple association network integration algorithm for
predicting gene function. Genome Biol 2008, 9(S4).

24. Kohler S, Bauer S, Horn D, Robinson P:Walking the Interactome for
prioritization of candiyear disease genes. Am J Human Genet 2008,
82(4):948–958.

25. Re M, Mesiti M, Valentini G: A fast ranking algorithm for predicting
gene functions in biomolecular networks. IEEE ACM Trans Comput Biol
Bioinform 2012, 9(6):1812–1818.

26. Malewicz G, Austern M, Bik AJ, Dehnert J, Horn I, Leiser N, Czajkowski G:
Pregel: a system for large-scale graph processing. In Proceedings of
the 2010 ACM SIGMOD International Conference onManagement of Data,
SIGMOD ’10. Indianapolis, Indiana, USA. New York: ACM Press;
2010:135–146.

27. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis
A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin JM, Sherlock G:
Gene Ontology: tool for the unification of biology. Nat Genet 2000,
25:25.

28. Angles R, Gutierrez C: Survey of graph database models. ACM Comput
Surv 2008, 40(1):Article 1.

29. Friedberg I, Linial M, Mooney S, Radivojac P: Critical assessment of
function annotation experiment. 2013. http://biofunctionprediction.
org.

30. Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann
T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer ELL,
Bateman A: Pfam: clans, web tools and services. Nucleic Acids Res 2006,
34(suppl 1):D247—D251.

31. Gough J, Karplus K, Hughey R, Chothia C: Assignment of homology to
genome sequences using a library of hidden Markov models that
represent all proteins of known structure. J Mol Biol 2001,
313(4):903–919.

32. Attwood TK, Bradley P, Flower DR, Gaulton A, Maudling N, Mitchell AL,
Moulton G, Nordle A, Paine K, Taylor P, Uddin A, Zygouri C: PRINTS and its
automatic supplement, prePRINTS. Nucleic Acids Res 2003, 31:400–402.

33. Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, Langendijk-Genevaux
PS, Pagni M, Sigrist CJ: The PROSITE database. Nucleic Acids Res 2006,
34(suppl 1):D227—D230.

34. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P,
Buillard V, Cerutti L, Copley R, Courcelle E, Das U, Daugherty L, Dibley M,
Finn R, Fleischmann W, Gough J, Haft D, Hulo N, Hunter S, Kahn D,
Kanapin A, Kejariwal A, Labarga A, Langendijk-Genevaux PS, Lonsdale D,
Lopez R, Letunic I, Madera M, Maslen J, et al.: New developments in the
InterPro database. Nucleic Acids Res 2007, 35(suppl 1):D224—D228.

35. Muller J, Szklarczyk D, Julien P, Letunic I, Roth A, Kuhn M, Powell S, Von
Mering C, Doerks T, Jensen LJ, Bork P: eggNOG v2. 0: extending the
evolutionary genealogy of genes with enhanced non-supervised
orthologous groups, species and functional annotations. Nucleic
Acids Res 2010, 38(suppl 1):D190—D195.

36. Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P: SMART 5: domains
in the context of genomes and networks. Nucleic Acids Res 2006,
34(suppl 1):D257—D260.

37. Re M, Valentini G: Network-based drug ranking and repositioning
with respect to DrugBank therapeutic categories. IEEE/ACM Trans
Comput Biol Bioinform 2013, 10(6):1359–1371.

38. STRING database. http://string-db.org.
39. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin

J, Minguez P, Bork P, Von Mering C, Jensen LJ: STRING v9. 1:
protein-protein interaction networks, with increased coverage and
integration. Nucleic Acids Res 2013, 41(D1):D808—D815.

40. Von Mering C, Jensen LJ, Kuhn M, Chaffron S, Doerks T, Krüger B, Snel B,
Bork P: STRING 7 recent developments in the integration and
prediction of protein interactions. Nucleic Acids Res 2007, 35(suppl
1):D358—D362.

41. Marcotte E, Pellegrini M, Thompson M, Yeates T, Eisenberg D: A
combined algorithm for genome-wide prediction of protein
function. Nature 1999, 402:83–86.

42. Bumgarner McDermottRJand, Samudrala R: Functional annotation
from predicted protein interaction networks. Bioinformatics 2005,
21(15):3217–3226.

43. Lippert G, Ghahramani Z, Borgwardt K: Gene function prediction form
synthetic leathality networks via ranking on demand. Bioinformatics
2010, 26(7):912–918.

44. Re M, Valentini G: Cancer module genes ranking using kernelized
score functions. BMC Bioinformatics 2012, 13(S14):S3.

45. Frasca M, Bertoni A, Re M, Valentini G: A neural network algorithm for
semi-supervised node label learning from unbalanced data. Neural
Netw 2013, 43:84–98.

46. Barabasi A, Gulbahce N, Loscalzo J:Networkmedicine: a network-based
approach to human disease. Nat Rev Genet 2011, 12:56–68.

http://biofunctionprediction.org
http://biofunctionprediction.org
http://string-db.org

Mesiti et al. GigaScience 2014, 3:5 Page 14 of 14
http://www.gigasciencejournal.com/content/3/1/5

47. Dudley J, Desphonde T, Butte A: Exploiting Drug-disease relationships
for computational drug repositioning. Brief Bioinform 2011,
12(4):303–311.

48. Mesiti M, Re M, Valentini G: Supporting materials from ‘Think globally
and solve locally: secondary memory-based network learning for
automated multi-species function prediction’ GigaScience
Database. 2014. http://dx.doi.org/10.5524/100090.

doi:10.1186/2047-217X-3-5
Cite this article as: Mesiti et al.: Think globally and solve locally: secondary
memory-based network learning for automated multi-species function
prediction. GigaScience 2014 3:5.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://dx.doi.org/10.5524/100090

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Local implementation of network-based algorithms
	Basic notation
	Local implementation of random walks

	Secondary memory-based computation
	Neo4j: a DB technology for graph querying and processing
	GraphChi: a disk-based system for graph processing

	Analyses
	Data description and experimental set-up
	Bacteria-net
	Eukarya-net

	Results and discussion
	Results with bacteria-net
	Results with Eukarya-net
	Experimental comparison between multi-species and single-species approaches

	Conclusions
	Availability of supporting data
	Endnote
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References

