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Abstract

Background: Functional annotation of novel proteins is one of the central problems in bioinformatics. With
the ever-increasing development of genome sequencing technologies, more and more sequence information
is becoming available to analyze and annotate. To achieve fast and automatic function annotation, many
computational (automated) function prediction (AFP) methods have been developed. To objectively evaluate the
performance of such methods on a large scale, community-wide assessment experiments have been conducted.
The second round of the Critical Assessment of Function Annotation (CAFA) experiment was held in 2013–2014.
Evaluation of participating groups was reported in a special interest group meeting at the Intelligent Systems in
Molecular Biology (ISMB) conference in Boston in 2014. Our group participated in both CAFA1 and CAFA2 using
multiple, in-house AFP methods. Here, we report benchmark results of our methods obtained in the course of
preparation for CAFA2 prior to submitting function predictions for CAFA2 targets.

Results: For CAFA2, we updated the annotation databases used by our methods, protein function prediction (PFP)
and extended similarity group (ESG), and benchmarked their function prediction performances using the original
(older) and updated databases. Performance evaluation for PFP with different settings and ESG are discussed. We
also developed two ensemble methods that combine function predictions from six independent, sequence-based
AFP methods. We further analyzed the performances of our prediction methods by enriching the predictions with
prior distribution of gene ontology (GO) terms. Examples of predictions by the ensemble methods are discussed.

Conclusions: Updating the annotation database was successful, improving the Fmax prediction accuracy score for
both PFP and ESG. Adding the prior distribution of GO terms did not make much improvement. Both of the
ensemble methods we developed improved the average Fmax score over all individual component methods except
for ESG. Our benchmark results will not only complement the overall assessment that will be done by the CAFA
organizers, but also help elucidate the predictive powers of sequence-based function prediction methods in
general.
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Background
Advancement in high-throughput genome sequencing
technologies in the last decade has posed a challenge in
the arena of protein bioinformatics - the exponential
growth of new sequence data that awaits functional elu-
cidation. To achieve fast and automatic function annota-
tion of novel/nonannotated proteins, a large variety of
automated function prediction (AFP) methods have been
developed. Conventional protein function prediction
methods such as BLAST [1], FASTA [2], and SSEARCH
[3] rely on the concept of homology. There are also
prediction methods based on motif/domain searches,
such as PRINTS [4], ProDom [5], PFAM [6], BLOCKS
[7], and integrative methods that are based on some of
the above-mentioned resources, such as InterPro [8]. In
addition, there are several methods that thoroughly
extract function information from sequence database
search results using different strategies. These methods
include GOFigure [9], OntoBlast [10], Gotcha [11],
GOPET [12], the protein function prediction (PFP)
method [13, 14], ConFunc [15], and the extended
similarity group (ESG) method [16]. Three methods,
SIFTER [17], FlowerPower [18], and Orthostrapper
[19], use phylogenetic trees to transfer functions to
target genes in the evolutionary context. There are other
function prediction methods that consider coexpression
patterns of genes [20–24], 3D structures of proteins [25–
34], and interacting proteins in large-scale protein-protein
interaction networks [35–40].
To evaluate the function prediction performances of

AFP methods on a large scale, the Critical Assessment
of Function Annotation (CAFA) was developed as a
community-wide experiment [41]. In CAFA, participants
submit function annotation using gene ontology (GO)
[42, 43] terms for a large number of target proteins. The
organizers evaluate the accuracy of predicted GO terms
for a subset of target annotations that are newly revealed
after the submission deadline. In the second round of
CAFA, i.e. CAFA2, for which an evaluation meeting was
held as a special interest group meeting at the 2014
Intelligent Systems in Molecular Biology (ISMB) confer-
ence in Boston, a total of 100,816 target protein se-
quences from 27 species were provided. Compared with
CAFA1 (48,298 targets in 18 species) that was held in
2001, CAFA2 had approximately twice as many targets.
We have participated in CAFA1 and CAFA2 with two

of our methods, PFP [13, 14] and ESG [16]. PFP extends
PSI-BLAST [1] search by extracting and scoring GO
annotations taken from distantly similar sequences and
applies contextual associations of GO terms to primarily
enhance sensitivity of function prediction [13, 14]. PFP
was ranked highest in the function prediction category
in the Critical Assessment of techniques for protein
Structure Prediction (CASP) [44]. ESG performs iterative

sequence database searches and assigns probability scores
to GO terms based on their relative similarity scores to
multiple-level neighbours in a protein similarity graph
[16]. In the CAFA1 experiment, ESG was ranked fourth in
the molecular function (MF) GO category among 54
participating groups [41].
In this work, we report benchmark results and en-

hancements made to PFP [13, 14] and ESG [16] as
preparation for the CAFA2 experiment, prior to par-
ticipation. We first discuss the effect of updated an-
notation databases that are used in PFP and ESG.
The annotation databases for PFP and ESG have not
been updated since 2008, when the two methods were
initially developed. In this study, we also wanted to exam-
ine the improved methods for predicting the current GO
annotations of protein sequences by using the updated
databases.
Next, we constructed two ensemble function predic-

tion methods, consensus method (CONS) and frequent
pattern mining (FPM), that combine GO predictions
from PFP [13, 14], ESG [16], PSI-BLAST [1], PFAM [6],
FFPred [45], and HHblits [46]. Among the six individual
methods, ESG with the updated database performed the
best. Both CONS and FPM showed improvement in the
average Fmax score as compared with all the individual
component methods except the ESG method. Successful
and unsuccessful cases of the CONS ensemble method
are discussed.

Data description
The benchmark dataset consists of 2,055 nonredundant
query protein sequences selected from the UniProt Ref-
erence Clusters (UniRef ) database [47] (version 30/07/
2013). UniRef provides clustered sets of sequences from
the UniProt knowledgebase. We selected a cluster reso-
lution of 50 % sequence identity. Among these UniRef50
clusters, we selected one representative protein from
each of the clusters that satisfied the following two
criteria: 1) each cluster representative should have at
least 1,500 proteins in its cluster, and 2) the cluster rep-
resentative protein should have a nonempty GO term
annotation in UniProt. We ran the function prediction
methods for sequences in this benchmark dataset and
evaluated the method's prediction performances.

Analyses
Database update for PFP and ESG
First we discuss the effect of updating the underlying
databases of PFP and ESG. The framework of both
methods consists of three steps: 1) retrieving similar se-
quences to a query sequence from a sequence database,
2) extracting GO terms that are associated with the re-
trieved sequences, and 3) predicting GO terms for the
query (see Methods). Two different databases are used
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in the procedure: a sequence database for Step 1, against
which the query is searched, and a second database for
Step 2 that stores GO terms for the retrieved sequences.
The latter database is referred to as the annotation
database.
The sequence database that is searched against (Step

1) for both PFP and ESG is UniProt (the Swiss-Prot por-
tion). This database is referred to as Swiss-Prot-SeqDB.
We have been using a 2008 version of Swiss-Prot, but
this time it was updated to the version 20 January 2013.
PFP and ESG use different annotation databases (Step

2). PFP uses the so-called PFPDB, which is an integrated
database of GO terms taken from multiple databases.
PFPDB is discussed in detail later in this section. ESG
uses the GO database downloaded from the website of
the Gene Ontology Consortium as its annotation data-
base. The previous version is from 2008, and the new
version used in this work (and in CAFA2) was down-
loaded in 2013.
Table 1 describes the differences in the number of se-

quences and GO terms between the old and new data-
bases. The number of sequences in Swiss-Prot-SeqDB is
expanded in the new database to more than double the
size (2.45 times) of the old database.
Table 1 also contains data for PFPDB, the annotation

database used for PFP. PFPDB is a collection of GO
terms from multiple annotation resources, including
UniProt-Swiss-Prot. The updated PFPDB database did
not include annotations from Swiss-Prot keywords and
added two new annotation resources to the previous
ones (PIRSF [48] and Reactome [49]). With the updated
PFPDB, the functional association matrix (FAM), which
is the conditional probability P(fa|fi) in Equation 1 (in
the Methods section) used in PFP, was also updated.
In PFPDB, the total number of GO terms in the up-
dated database is increased to almost double (1.91
times) the number from the old database. The num-
ber of unique GO terms in the annotation database

for ESG, which is the GO database, is increased by
1.78 times from 2008–2013.
In Table 2, we show the effects of combining multiple

annotation resources (from which annotations are trans-
ferred) for the updated PFPDB in terms of the sequence
coverage and the GO coverage. The sequence coverage
is the percentage of sequences in Swiss-Prot that have at
least one GO term annotation. The GO coverage is the
percentage of GO terms that are included in PFPDB
relative to the entire GO vocabulary. Having a large
coverage is essential for the PFP and ESG function
prediction methods, because it directly affects the algo-
rithms’ ability to retrieve function information from a
PSI-BLAST search result.
Each of the Swiss-Prot-GO, InterPro, and PFAM data-

bases has very high (>90 %) sequence coverage as an
annotation resource. In terms of the GO coverage,
Swiss-Prot-GO has the highest percentage. The rest of
the databases have relatively low coverage, with InterPro
being the highest among them; however, its GO cover-
age is as low as 10.59 %. Overall, 98.42 % of Swiss-Prot
sequences have at least one GO annotation, and
60.83 % of GO terms in the current GO vocabulary
are represented in PFPDB. Compared with the se-
quence and GO coverage of Swiss-Prot-GO, which
was the starting point of the annotation, adding more
GO terms from additional sources did not gain much
coverage, only about 4 % for the sequence coverage
and 0.5 % for the GO coverage. These results are sub-
stantially different from when we constructed PFPDB
originally in 2008 [14]. At that time, the sequence
coverage jumped from 13.4 to 92.9 % by importing
GO terms from the additional sources [14] (Table 2).

Table 1 Database update

2008 version 2013 version

Sequence database
(Swiss-Prot-SeqDB)

Number of sequences 211,104 514,673

PFPDB (Annotation
database for PFP)

Number of unique GO terms 18,327 35,029

External resources for PFPDB HAMAP, InterPro,
Swiss-Prot-keywords,
PFAM, PRINTS,
ProDom, PROSITE,
SMART, TIGRFam

HAMAP, InterPro,
PFAM, PRINTS,
ProDom, PROSITE,
SMART, TIGRFam,
PIRSF, Reactome

Annotation database for ESG

Number of GO terms 13,420 23,896

Table 2 Coverage from additional resources in updated PFPDB

Sequence coverage (%)* GO coverage (%)†

Swiss-Prot-GO 94.50 60.27

HAMAP 58.35 3.55

InterPro 95.75 10.59

PFAM 92.34 6.47

PRINTS 22.26 3.09

ProDom 5.39 1.18

ProSite 56.45 2.53

SMART 23.25 1.26

TIGRFam 49.92 4.78

PIRSF 18.38 4.29

Reactome 1.46 0.01

ALL 98.42 60.83

*Sequence coverage is the percentage of sequences in Swiss-Prot annotated
with at least one GO term after addition of translated terms from the format
in column 1. †GO coverage is the percentage of terms in the GO vocabulary
represented in Swiss-Prot after addition of translated terms from the resource
in column 1
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The reason for the small gain in coverage can probably
be attributed to the fact that GO annotations in Swiss-Prot
have been far better developed since then, and annotations
in different databases are now better shared between
databases.

Benchmarking prediction accuracy of PFP and ESG
Figure 1 shows the results of PFP using the old and the
updated PFPDB. To simulate a realistic scenario in
which close homologs of a query do not exist in the
sequence database, sequences similar to the target in the
sequence database that have a certain E-value or smaller
(i.e. more significant) were removed. The E-value cut-off
is shown along the x-axis of the figure. Thus, for
example, with an E-value of 0.01 (shown by x = 0.01 in
the figure), all the sequences in the database that have
an E-value of 0.01 or smaller to the query were removed.
At x = 0, sequence hits with an E-value of 0 were re-
moved in order to avoid annotation transfer from exactly
matched sequences. The y-axis reports the average Fmax

score (See Methods Section) over all benchmark targets.
For this evaluation, we extend both predicted and true

GO terms of each target with parental GO terms in the
GO hierarchy. For a predicted or true GO term GOi, all
parental GO terms of GOi in the GO hierarchy (more
precisely, a directed acyclic graph or DAG) were added,
and the performance evaluation was done by comparing
the extended GO term sets. This parental propagation
on the true and predicted annotation sets was also
adopted in the official CAFA assessments. The perform-
ance evaluation without applying the parental propaga-
tion is provided in Figures S1 and S2 in Additional file 1.
For PFP with the updated PFPDB, different functional

association matrix (FAM) score cut-offs were tested. The
FAM score is the probability that a GO term fa coexists
in the annotation of a protein when another GO term fi

already exists in the annotation of the protein. Con-
cretely, it is the conditional probability P(fa|fi) in
Equation 1 in the Methods section. For example, in
Fig. 1, PFP-BP(or MF)-FAM0.9 represents the prediction
results of PFP using the updated PFPDB and only very
strongly associated GO terms in FAM, with a FAM score
of 0.9 or higher. On the other hand, PFP-BP(or MF)-
FAM0.25 used many GO term associations, including
ones that are weakly associated, with a conditional prob-
ability of 0.25 or higher. For more details of the FAM
score, refer to the original paper describing the PFP al-
gorithm [13, 14].
Figure 1 shows predictions for the biological process

(BP) GO category (Fig. 1a) and for the molecular function
(MF) GO category (Fig. 1b), separately. In Fig. 1a, all of
the PFP predictions with the new PFPDB performed bet-
ter than PFP with the old database (PFP-BP-OLD). For
PFP-BP/MF-OLD, a FAM score threshold of 0.9 was
used. Among five different FAM score threshold values
(0.25–0.9), PFP-BP-FAM0.9 showed the largest average
Fmax accuracy across all the E-value cut-off scores. At the
first E-value cut-off, 0.0, PFP-BP-FAM0.9 achieved the lar-
gest average Fmax score of 0.6873, and PFP-BP-FAM0.75
showed the second highest score of 0.6856.
Comparing results using the full PFPDB (PFP-BP-

FAM0.5) and those using a subset of GO terms in
PFPDB that have experimental evidence (i.e. GO terms
that are not inferred from electronic annotation, non-
IEA; PFP-BP-nonIEA-FAM0.5), the former had a larger
average Fmax score, as shown in Fig. 1a/b. In Fig. 1 we
excluded IEA GO terms only from PFPDB and kept IEA
GO terms for the target proteins as correct terms. We
also evaluated predictions when IEA GO terms are ex-
cluded from correct GO terms in the benchmark dataset
(Figure S3 in Additional file 1), where a substantial drop
in the accuracy was observed. This is because the IEA

Fig. 1 Performance of protein function prediction (PFP) evaluated on GO terms including parental terms. Performance of PFP using the new and
the old PFP database (PFPDB). Before evaluating predictions, both predicted and true GO terms were propagated to the root of the ontology. (a)
Evaluation on biological process (BP) GO terms. (b) Evaluation on molecular function (MF) GO terms
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GO terms of target proteins, which can be easily identi-
fied by sequence similarity, are now considered to be
false positives.
Figure 1b shows the performance on MF GO terms.

Overall, prediction accuracy for MF (Fig. 1b) was higher
than for BP (Fig. 1a). The best-performing prediction
setting for MF was again PFP-MF-FAM0.9, with an
average Fmax score of 0.7817 at an E-value cut-off of 0.0,
and the second-best performing prediction setting was
PFP-MF-FAM0.75 (0.7644). Consistent with Fig. 1a, PFP
with the old database was the worst (an Fmax score of
0.6479 at an E-value cut-off of 0.0). In the original paper
of PFP [14], a similar performance comparison was
conducted with different FAM score thresholds (Figure 4
in the original paper of PFP [14]), where PFP with a
FAM score cut-off of 0.9 was shown to perform best
among others. Thus, the findings for the current
benchmark with the updated database is consistent
with the earlier study [14].
In Fig. 2, we added the ESG results to the plots. The

Fmax score was computed using GO terms for all three
ontologies (BP, MF, and cellular component [CC]). ESG
with the updated database (ESG-Updated) performed
the best (average Fmax score of 0.8401 at an E-value cut-
off of 0.0) among the eight settings compared. ESG-
OLD was the second best (an average Fmax score of
0.7655 at an E-value cut-off of 0.0), and PFP-OLD had
the lowest accuracy (an average Fmax score of 0.5852 at
an E-value cut-off of 0.0). Similar to Figure S3 in
Additional file 1, we removed IEA GO terms from anno-
tation of the benchmark proteins and computed the Fmax

score for all three GO term categories (Figure S4 in
Additional file 1), where a similar drop of the Fmax score
was observed.

In summary, updating the databases contributed to
improving the prediction accuracy (average Fmax scores)
substantially for both PFP and ESG. ESG showed a higher
average Fmax score than PFP. The best-performing FAM
score threshold value for PFP was 0.9, which was consist-
ent with our earlier study.

Prediction performance of ensemble methods
Next we discuss the prediction accuracy of two ensemble
methods in comparison with individual component
methods (Table 3). Two ensemble methods, CONS and
FPM, were constructed that combine GO predictions from
six individual methods: PFP, ESG, PFAM, PSI-BLAST,
HHblits, and FFPred. The CONS method computes a score
for a GO term as a weighted sum of scores of the GO
terms from the component methods. The weight of a
method is prior knowledge of the accuracy of the method.
FPM selects combinations of GO terms that are computed
from the predictions of multiple methods with a suffi-
ciently high score (see Methods). In Table 3, we show re-
sults of two variations of FPM. FPM_maxLen is an FPM
method that selects a GO-term set with the largest size
(largest number of GO terms) from a candidate pool of
predicted GO-term sets with a sufficiently large score.
FPM_maxScoreLen, on the other hand, selects the GO-
term set with the highest overall score (often resulting in
predictions with a small number of GO terms). Overall,
out of all the individual and ensemble methods, the most
successful method was ESG-Updated, which showed the
largest average Fmax score of 0.8401. CONS had the second
highest score (Fmax score of 0.8085), followed by FPM_max-
Len (Fmax score 0.7937), ESG-Old, and PFP-Updated. On
this benchmark, FFPred, PFAM, and HHblits performed very
poorly relative to PFP-Updated and ESG-Updated.
To further understand performance of the ensemble

methods, we next examined the number of wins for each

Fig. 2 Performance of PFP and extended similarity group (ESG) on
GO terms including parental terms. Each predicted and true GO
term was propagated to the root of the ontology before evaluation.
GO terms in all three ontologies (BP, MF, CC) were used in
computing prediction accuracy

Table 3 Average Fmax for individual and ensemble methods

Method Average Fmax

PFP-Updated 0.7447

PFP-OLD 0.5852

ESG-Updated 0.8401

ESG-OLD 0.7655

FFPred 0.3248

PFAM 0.5583

HHblits 0.4662

PSI-BLAST 0.5991

CONS 0.8085

FPM_MaxLen 0.7937

FPM_MaxScoreLen 0.4628

All true and predicted annotations have been propagated to the root of the
ontology. All three GO categories were used in the evaluation
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method, i.e. the number of times that each method
showed the largest Fmax score (Fig. 3). In this analysis,
the confidence cut-off values used for each component
method were optimized for each target to give the lar-
gest Fmax score to the target; this was done in order to
understand how well ensemble methods can assemble
individual predictions for the best-case scenario in which
each component method offers its best possible predic-
tion. In terms of the number of wins, ESG had the
highest, followed by CONS and then FPM, which is con-
sistent with results for the average Fmax scores (Table 3).
Note, there are queries where multiple methods tied for
same Fmax score. Overall, the two ensemble methods did
not show better performance than the best component
method, ESG, but as illustrated later, there are many
cases in which the ensemble methods successfully se-
lected correct GO terms from different component
methods.
From Fig. 3, we can see that CONS and FPM provided

the most accurate prediction for 52.2 % and 40.0 % of
the queries. In addition, Figure S5 in Additional file 1
provides further information about the fraction of
queries where predictions from CONS and FPM had the
highest, second highest, third highest, etc. Fmaxscore. It
is shown that both CONS and FPM provided the best
prediction for the largest fraction of the queries, al-
though many of them were tied with ESG, resulting ESG
as the overall best method.

Case studies of the CONS method
Table 4 illustrates how CONS combines predictions of
the individual methods. The first two examples (Tables 4

and 5) are cases where CONS improved the prediction
over the individual methods. Similar to Fig. 3, the Fmax

computation for this analysis is done at the individual
protein level. The first example, Table 4, contains predic-
tions for a capsid protein from the Hepatitis E virus
(UniProt ID: Q9IVZ8). For this protein, CONS had the
highest Fmax score of 0.667, and PFP had the second
highest Fmax score of 0.575 (Fmax was computed after
parental propagation). In its top hits, CONS correctly
predicted all five GO annotations of this protein (shown
in bold in the table) together with two parental terms of
correct GO terms (shown in italics in the table). Inter-
estingly, PFP, the second-best predictor, predicted only
four of the five correct GO terms, whereas the last one,
GO:0039615, came from ESG.
For the second example (Table 5), CONS had the lar-

gest Fmax score of 0.915, followed by PSI-BLAST, which

Fig. 3 Fraction of queries where each method showed the largest
Fmax score. The fraction on the y-axis was computed as the number
of queries in which a method had the largest Fmax score over the
total number of queries (2,055 protein sequences). Frequent pattern
mining (FPM) in this graph denotes FPM_MaxLen because it
performed better than its counterpart, FPM_maxscoreLen. The
fraction does not sum up to 100 % because there were cases where
multiple methods tied for the largest Fmax score

Table 4 Examples of predictions by CONS and individual-
component methods. Capsid protein (UniProt ID: Q9IVZ8)

Method GO id Confidence score GO term

CONS GO:0019028 1.00 viral capsid

GO:0005198 0.97 structural molecule activity

GO:0019012 0.70 virion

GO:0039615 0.68 T = 1 icosahedral viral capsid

(GO:0032774) 0.43

GO:0003723 0.43 RNA binding

GO:0044228 0.43 host cell surface

GO:0030430 0.43 host cell cytoplasm

PFP GO:0044228 1.00 host cell surface

(GO:0032774) 1.00

GO:0030430 1.00 host cell cytoplasm

GO:0005198 1.00 structural molecule activity

GO:0003723 1.00 RNA binding

(GO:0006351) 0.71

GO:0043656 0.65 intracellular region of host

GO:0033646 0.65 host intracellular part

(GO:0008150) 0.59

GO:0003676 0.59 nucleic acid binding

ESG GO:0019012 1.00 virion

GO:0019028 1.00 viral capsid

GO:0039615 0.99 T = 1 icosahedral viral capsid

(GO:0019048) 0.15

(GO:0030683) 0.15

(GO:0039573) 0.15

GO terms in bold are correct annotations of the protein. Terms in italic
indicate parental terms of correct GO terms. Terms in parentheses are
wrong predictions
For CONS prediction, GO terms that have a confidence score larger than 0.4
are listed. For PFP prediction, GO terms that have a confidence score larger
than 0.5 are listed. For ESG, all predicted GO terms are shown
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had an Fmax score of 0.824. The query, succinate dehydro-
genase iron-sulfur subunit, has eight GO term annota-
tions. Among them, CONS predicted seven with high
confidence scores, and one, GO:0000104, at a low score.
Out of these eight GO-term annotations, GO:00051539,
GO:0046872, and GO:0006099 were predicted with high
scores by three individual methods, PFP, ESG, and
PSI-BLAST. GO:0000104 was strongly predicted by
PSI-BLAST. GO:0009055 and GO:0022900 were pre-
dicted with relatively high scores by ESG and PFP.
Thus, CONS can successfully select different correct
terms from different methods.
There are also cases showing the opposite trend,

where CONS could not improve prediction (Table 6). In
the third example, showing the GO annotations of ATP-
dependent RNA helicase, the best Fmax score among the
component methods was from ESG (0.761), followed by
PSI-BLAST (0.673), PFP (0.667), and PFAM (0.653),
while CONS had an Fmax score of 0.66 and was ranked
fourth among all methods. In this example, all five cor-
rect GO terms were predicted by ESG, but four of them
were with weak scores. PFP predicted only two correct

Table 5 Examples of predictions by CONS and individual-
component methods. Succinate dehydrogenase iron-sulfur
subunit (UniProt ID: P51053)

Method GO id Confidence
score

GO term

CONS GO:0051536 1.00 iron-sulfur cluster binding

GO:0009055 0.25 electron carrier activity

GO:0051539 0.24 4 iron, 4 sulfur cluster binding

GO:0046872 0.24 metal ion binding

GO:0006099 0.22 tricarboxylic acid cycle

(GO:0016020) 0.21

GO:0051537 0.21 2 iron, 2 sulfur cluster binding

GO:0051538 0.21 3 iron, 4 sulfur cluster binding

GO:0016491 0.16 oxidoreductase activity

GO:0055114 0.16 oxidation-reduction process

GO:0009060 0.16 aerobic respiration

GO:0022900 0.14 electron transport chain

(GO:0008177) 0.13

…and 9 more terms

GO:0000104 0.10 succinate dehydrogenase
activity

PFP GO:0055114 1.00 oxidation-reduction process

GO:0051540 1.00 metal cluster binding

…and 10 more terms

GO:0051539 0.52 4 iron, 4 sulfur cluster binding

GO:0009055 0.46 electron carrier activity

(GO:0005886) 0.46

(GO:0071944) 0.44

(GO:0044435) 0.43

GO:0022900 0.42 electron transport chain

…and 9 more terms

GO:0046872 0.35 metal ion binding

…and 6 more terms

GO:0006099 0.33 tricarboxylic acid cycle

…and 8 more terms

GO:0000104 0.25 succinate dehydrogenase
activity

(GO:0050136) 0.23

(GO:0003954) 0.23

GO:0051537 0.22 2 iron, 2 sulfur cluster binding

GO:0051538 0.20 3 iron, 4 sulfur cluster binding

ESG (GO:0005743) 0.66

GO:0006099 0.66 tricarboxylic acid cycle

(GO:0008177) 0.66

GO:0009055 0.66 electron carrier activity

GO:0046872 0.66 metal ion binding

GO:0051537 0.66 2 iron, 2 sulfur cluster binding

GO:0051538 0.66 3 iron, 4 sulfur cluster binding

Table 5 Examples of predictions by CONS and individual-
component methods. Succinate dehydrogenase iron-sulfur
subunit (UniProt ID: P51053) (Continued)

GO:0051539 0.66 4 iron, 4 sulfur cluster binding

(GO:0005749) 0.60

(GO:0048039) 0.60

GO:0022900 0.56 electron transport chain

(GO:0016020) 0.80

GO:0051538 0.80 3 iron, 4 sulfur cluster binding

GO:0051539 0.80 4 iron, 4 sulfur cluster binding

GO:0051536 0.80 iron-sulfur cluster binding

(GO:0006810) 0.80

(GO:0009061) 0.80

GO:0046872 0.80 metal ion binding

GO:0006099 0.80 tricarboxylic acid cycle

GO:0009060 0.80 aerobic respiration

(GO:0005489) 0.80

GO:0051537 0.80 2 iron, 2 sulfur cluster binding

(GO:0005506) 0.80

GO:0000104 0.80 succinate dehydrogenase
activity

(GO:0006118) 0.80

GO:0016491 0.80 oxidoreductase activity

GO terms in bold are correct annotations of the protein. Terms in italic
indicate parental terms of correct GO terms. Terms in parentheses are
wrong predictions
For CONS, PFP, and ESG prediction, GO terms that have a confidence score
equal to or larger than 0.10, 0.20, and 0.56, respectively, are shown (i.e. up to
the last correct GO term). For PSI-BLAST all predicted GO terms are shown
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terms, GO:0005524 (ATP binding) with a high score and
GO:0000027 (ribosomal large subunit assembly) with a
low score, while PSI-BLAST, FFPred, and PFAM only
predicted GO:0005524 among the five correct terms.
Thus, combining prediction methods could not increase
the scores of the correct terms, and rather, introduced
over 100 incorrect terms.

Adding prior GO term distribution
We have also examined whether the prediction accuracy
improves by supplementing a method’s prediction with
the known distribution of GO terms in Swiss-Prot. We
performed this experiment because it was shown in
CAFA1 [41, 50] that the prior distribution itself often
has relatively good prediction performance, particularly
when no easily identified homologs with known function
are available for a query protein. The prior GO-term
distribution was added to the predicted GO terms for a
target as follows: scores of the predicted GO terms for
the target were normalized so that the maximum score
became 1.0. In parallel, the frequency (0.0–1.0) of each
of the GO terms in Swiss-Prot was determined and
normalized so that the most frequently observed GO

Table 6 Examples of predictions by CONS and individual-
component methods. ATP-dependent RNA helicase SrmB
(UniProt ID: P21507)

Method GO id Confidence
score

GO term

CONS GO:0005524 1.00 ATP binding

GO:0003676 0.29 nucleic acid binding

GO:0004386 0.24 helicase activity

GO:0000166 0.24 nucleotide binding

GO:0008026 0.24 ATP-dependent helicase activity

GO:0016787 0.20 hydrolase activity

GO:0003723 0.19 RNA binding

(GO:0003677) 0.17

…and 37 more terms

GO:0004004 0.04 ATP-dependent RNA helicase
activity

GO:0044424 0.04 intracellular part

(GO:0051716) 0.04

(GO:0071843) 0.04

…and 142 more terms

GO:0000027 0.01 ribosomal large subunit
assembly

(GO:0050789) 0.01

(GO:0051252) 0.01

…and 3 more terms

GO:0033592 0.01 RNA strand annealing activity

GO:0030687 0.01 preribosome, large subunit
precursor

PFP GO:0044464 1.00 cell part

GO:0008150 1.00 biological process

GO:0005623 1.00 cell

GO:0003676 1.00 nucleic acid binding

GO:0004386 0.99 helicase activity

GO:0005575 0.94 cellular component

GO:0022613 0.84 ribonucleoprotein complex
biogenesis

GO:0003674 0.84 molecular function

(GO:0090304) 0.77

GO:0032559 0.76 adenyl ribonucleotide binding

GO:0005524 0.76 ATP binding

…and 116 more terms

GO:0004004 0.11 ATP-dependent RNA helicase
activity

(GO:0080090) 0.10

(GO:0070013) 0.10

…and 407 more terms

ESG GO:0000027 0.01 ribosomal large subunit
assembly

GO:0000166 0.80 nucleotide binding

Table 6 Examples of predictions by CONS and individual-
component methods. ATP-dependent RNA helicase SrmB
(UniProt ID: P21507) (Continued)

GO:0003676 0.80 nucleic acid binding

GO:0003723 0.80 RNA binding

GO:0005524 0.80 ATP binding

GO:0004386 0.73 helicase activity

GO:0008026 0.73 ATP-dependent helicase activity

GO:0016787 0.73 hydrolase activity

(GO:0000184) 0.46

(GO:0005634) 0.46

(GO:0006364) 0.46

GO 0042254 0.46 ribosome biogenesis

(GO:0005737) 0.38

GO:0004004 0.28 ATP-dependent RNA helicase
activity

GO:0000027 0.07 ribosomal large subunit
assembly

(GO:0005515) 0.07

GO:0030687 0.07 preribosome, large subunit
precursor

GO:0033592 0.07 RNA strand annealing activity

GO terms in bold are correct annotations of the protein. Terms in italic
indicate parental terms of correct GO terms. Terms in parentheses are
wrong predictions
For CONS prediction, GO terms that have a confidence score equal to or larger
than 0.0073 (i.e. up to the last correct GO term) are listed. For PFP prediction,
GO terms that have a confidence score equal to or larger than 0.07 are listed.
For ESG, all predicted GO terms are shown
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term had a normalized frequency of 1.0. Then, the top
1,000 most-frequent GO terms in Swiss-Prot were added
to the set of predicted GO terms and sorted by the
normalized score. The same 1,000 most-frequent GO
terms were added to all the targets.
Figure 4 compares the predictions of ESG, PFP, ESG-

OLD, and two ensemble methods, CONS and FPM, with
and without adding the prior GO distribution. The same
data were plotted in two different ways: a receiver-
operator characteristics (ROC) curve in Fig. 4a and a
precision-recall curve in Fig. 4b. For all the prediction
methods, adding prior GO distribution did not improve
the accuracy, which can be seen from the plots and the
Fmax values shown in the symbol legends.

Discussion
We reported a benchmark study of PFP and ESG that
has been performed in preparation to participate in
CAFA2. An essential task in bioinformatics is to propose
and develop new tools and new ideas. However, to sup-
port the biological community, it is equally important to
maintain and update previously developed software tools
so that users can continue using them. For a prediction
method, it is important that the prediction accuracy be
improved over time so that it can keep pace with other
existing methods of the same type. Since the original
development of PFP and ESG, the two methods have
been benchmarked in CAFA1 by the organizers [41] as
well as by our group [50], and their webservers have
been recently renovated so that users can obtain predic-
tion information in a more organized fashion [51]. The
participation in CAFA2 provided us with a suitable op-
portunity to update databases for PFP and ESG and to

develop ensemble approaches. This article will comple-
ment the CAFA2 evaluation paper to be published by
the organizers elsewhere in the near future.
We have shown that the prediction performance of

PFP and ESG improved by updating databases. Although
it may sound obvious to expect better performance with
updated databases, it is not necessarily a given, especially
considering the recent very-fast expansion of databases.
This fast expansion has caused several problems, such as
increasing sparseness of useful data (i.e. functional anno-
tation) relative to the size of the sequence databases and
the error propagation of incorrect annotations [52]. The
comparison between using all annotations and only non-
IEA annotations showed that computational annotations
are still useful for function prediction; however, more
elaborated use of databases might need to be considered
if the quality of database information is not maintained
throughout the rapid database expansion.
The ensemble methods, CONS and FPM, showed the

largest average Fmax score over all individual component
methods except for ESG. The six individual methods
used in the ensemble methods may not be the best
choice, since their performances were imbalanced, i.e. a
large discrepancy in accuracy between PFP/ESG and the
rest of the methods. Also, it is noteworthy that all the in-
dividual methods use the same source of information as
input, i.e. sequence data. Since both CONS and FPM
seem to have an ability to assemble the more accurate
GO-term set as predictions compared with individual
methods (Fig. 3), it will be interesting to apply the two
ensemble methods to integrate a better combination of
individual methods that use a wide variety of informa-
tion sources, such as protein structures and protein-

Fig. 4 Performance with prior GO term distribution. For PFP, ESG, CONS, FPM, and ESG-OLD, prior GO term distribution was added as a part of
the predictions. The numbers shown in the symbol legend are the average Fmax scores of the methods. (a) ROC curve. The x-axis is the true
negative rate while the y-axis shows the true positive rate. (b) The same data are shown in a precision-recall curve
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protein interaction data and whose performance is more
balanced.
Periodic updates and benchmarking of bioinformatics

tools is a way for bioinformatics to be an integral part of
the biological research community and to be connected
to experimental biology. We hope this update report of
PFP and ESG helps users to better understand the
current status of the tools and will encourage more re-
searchers to use them in research projects.

Methods
PFP method
The PFP algorithm [13, 14] uses PSI-BLAST to obtain
sequence hits for a target sequence and computes the
score for GO term fa as follows:

s f αð Þ ¼
XN
i¼1

XNfunc ið Þ

j¼1

− log Evalue ið Þð Þ þ bð ÞPðf αjf j
�

Þ
�

ð1Þ

where N is the number of sequence hits considered in
the PSI-BLAST hits; Nfunc(i) is the number of GO
annotations for the sequence hit i; E-value(i) is the PSI-
BLAST E-value for the sequence hit i; fj is the j-th anno-
tation of the sequence hit i; and constant b takes value 2
(= log10100) to keep the score positive when retrieved
sequences up to an E-value of 100 are used. The
conditional probabilities P(fa|fj) are used to consider
co-occurrence of GO terms in a single sequence anno-
tation, which are computed as the ratio of the number
of proteins coannotated with GO terms fa and fj as
compared with ones annotated only with the term fj.
To take into account the hierarchical structure of GO,
PFP transfers the raw score to the parental terms by
computing the proportion of proteins annotated with
fa relative to all proteins that belong to the parental
GO term in the database. The score of a GO term
computed as the sum of the directly computed score
by Equation 1 and the ones from the parental propa-
gation is called the raw score.

ESG method
ESG [16] recursively performs PSI-BLAST searches from
sequence hits obtained in the initial search from the
target sequence, thereby performing multilevel explor-
ation of the sequence-similarity space around the target
protein. Each sequence hit in a search is assigned a
weight that is computed as the proportion of the -log(E-
value) of the sequence relative to the sum of the -log(E-
value) from all the sequence hits considered in the
search of the same level; this weight is assigned for GO
terms annotating the sequence hit. The weights for GO
terms found in the second level search are computed in

the same fashion. Finally, the score for a GO term is
computed as the total weight from the two levels of the
searches. The score for each GO term ranges from 0.0
to 1.0.

FFPred
FFPred [53] predicts more than 440 possible GO terms
for a query protein using support vector machines
(SVMs) that use more than 200 features of the query.
These features are spread among 14 feature types. These
types include 20 features describing amino acid compos-
ition; seven features describing the sequence itself; 50
features describing the phosphorylation, and others [54].
The SVM-Light [55] package was used to create the
SVM classifiers. For each GO term, an SVM classifier
was trained by empirically determining the set of kernel
parameters and features that performed best in a k-fold
cross validation of the set of training proteins. The best
features were determined on the level of the feature
types, so that if the inclusion of the features in a feature
type did not improve the SVM, all the features for that
feature type were discarded.

HHblits
HHblits [46] takes a sequence or multiple sequence
alignment as a query and produces a profile hidden Mar-
kov model (HMM) from this input. Using the computed
HMM, the program iteratively searches a database of
profile HMMs, with similar HMMs used to update the
query HMM. A prefilter of discretized HMM profiles is
used in order to dramatically speed up the process.
There are two prefiltering steps when comparing the
extended sequence profiles to those of the database.
The first makes sure that the score of the largest
ungapped alignment between two profiles passes a
threshold. Out of the remaining sequences, those with
a Smith-Waterman alignment better than the threshold
are used. The GO terms from the protein sequences in
the final HMM are collected as the predictions of GO
terms for the query.

CONS
CONS is one of the ensemble methods we constructed
that combines predicted GO terms for a target protein
from the following six AFP methods, namely, PFP [13,
14], ESG [16], PSI-BLAST [1], PFAM [6], FFPred [53],
and HHblits [46]. PSI-BLAST was run for up to three it-
erations and GO terms were taken from the top five hits.
PFAM [56] is a database of HMMs of protein families
and domains. A protein can be associated with more
than one protein domain HMM. A query sequence was
compared with HMMs in PFAM using the HMMER
software suite [57] and GO terms were retrieved from
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hits equal to or below an E-value of 0.01 using the mod-
el2GO file associated with PFAM.
CONS combines GO-term predictions from each of

the individual methods and provides a consensus confi-
dence score. The consensus confidence score for a GO
term is essentially the weighted sum of scores of the GO
term from individual methods. The score for GO term
GOi is defined as:

CONS score GOi
� � ¼

X6
m¼1

wmconf GOi
m

� �

maxNk¼1 CONS−score GOk
� �� �

ð2Þ

where m is an index through each of the six individual
methods, and N is the total number of unique GO terms
for the target predicted by the six methods. The weights
wm reflect prior knowledge of the performances of indi-
vidual methods m, which are the accuracies of the
methods (Fmax score). wm for a target sequence was
computed on the benchmark dataset after removing the
target from the dataset.

FPM ensemble method
FPM is a widely used data-mining technique for finding
frequently occurring patterns of items. Agrawal et al.
[58] first introduced an a priori technique of mining all
frequent item sets from a transactional database. Later,
Tao et al. refined the technique for datasets where each
item can have weights [59]. Here we used the flavor of
the latter technique to construct an ensemble protein
function prediction method from the underlying six in-
dividual AFP methods.
We describe the FPM method in the function-prediction

setting with a toy example. Let us consider GO-term
predictions from three AFP methods for a certain target
protein: Method A, B, and C. Let us also assume that each
method has a precomputed Fmax accuracy score: accuracy(-
Method A) = 0.6, accuracy(Method B) = 0.7, and accuracy(-
Method C) = 0.5. We assume that the three methods
predict GO terms as follows:

� Method A: GO1: 0.5, GO2: 0.6, GO3: 0.4
� Method B: GO2: 0.7, GO3: 0.8, GO4: 0.4, GO5: 0.6
� Method C: GO2: 0.8, GO3: 0.9, GO5: 0.6

Here, GO1:0.5 under “Method A” denotes that
Method A predicts GO1 with a confidence score of 0.5.
First, we define two weights that we use throughout

the FPM process. weight(mk) is a weight given to each
method mk as follows:

weight mkð Þ ¼

Xmkj j

i¼1

weight GOið Þ

mkj j � Accuracy mkð Þ ð3Þ

|mk| is the number of GO terms predicted by the method
mk. Accuracy(mk) for a target sequence is computed
on the benchmark dataset after removing the target
from the dataset.
When the benchmark dataset has multiple target pro-

teins, method weights can be different for each target.
For the target in the above toy data,

weight MethodAð Þ ¼ 0:5þ 0:6þ 0:4
3

� 0:6 ¼ 0:3

weight MethodBð Þ ¼ 0:7þ 0:8þ 0:4þ 0:6
4

� 0:7 ¼ 0:44

weight MethodCð Þ ¼ 0:8þ 0:9þ 0:6
3

� 0:5 ¼ 0:38

weight(GOset) is a weight given to a set of GO terms
with set size |set| as follows:

weight GOsetð Þ ¼

XSj j

k¼1

weight mkð Þ

XMj j

k¼1

weight mkð Þ
ð4Þ

Here M is the set of all methods, and S is the set of
methods that predict GOset. For the above toy example,
M is 3 and S is 2 for GO2 (since 2 methods, i.e., Method
A and Method B, have GO2. GO2 is a GOset of size,
|set| = 1). Initially, FPM generates all possible GOsets of
|set| = 1 and computes the weights of each GOset using
Equation 4. In the above toy example, the generated
GOsets are {GO1, GO2, GO3, GO4, GO5} and the
weights are:

weight GO1ð Þ
¼ weight MethodAð Þ

weight MethodAð Þ þ weight MethodBð Þ þ weight MethodCð Þ
¼ 0:3

0:3þ 0:44þ 0:38
¼ 0:27

weight GO2ð Þ ¼
weight MethodAð Þ þ weight MethodBð Þ

þweight MethodCð Þ
weight MethodAð Þ þ weight MethodBð Þ

þweight MethodCð Þ

¼ 1:12
1:12

¼ 1:0

weight GO3ð Þ ¼ 1:0; weight GO4ð Þ ¼ 0:39; weight GO5ð Þ ¼ 0:73

Then FPM uses a predefined weight cut-off to select
the GOsets with weights higher than the cut-off and
maintains a lexicographic ordering of this selected
GOsets, L, throughout the rest of the process. In the
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above toy example, for a weight cut-off of 0.5, FPM se-
lects L = {GO2, GO3, GO5}.
Now, the FPM algorithm runs iteratively starting from

|set| = 2 and increases |set| by 1 at each iteration. At
each iteration i, FPM creates a list, GListi of frequently
occurring GOsets at the current iteration i. At iteration
1, GList1 = L. In each iteration i, FPM generates a GOset

where |set| = i by lexicographically extending each elem-
ent in GListi-1 with each element in set L. FPM then
keeps the GOsets that have weight(GOset) above the
weight cut-off and stores them in GListi. Iterations con-
tinue until no new GOset can be generated. We demon-
strate the generation of GListi at each iteration for the
above toy example.

� Iteration 1: Candidate GOset: {GO1, GO2, GO3,
GO4, GO5}, GListi: {GO2, GO3, GO5}

� Iteration 2: Candidate GOset: {GO2-GO3, GO2-
GO5, GO3-GO5}, GListi: {GO2-GO3, GO2-GO5,
GO3-GO5}

� Iteration 3: Candidate GOset: {GO2-GO3-GO5},
GListi: {GO2-GO3-GO5}

At iteration i, weight(GOset) with |set| = i is calculated
using Equation 4. In the above list, the weight of GOset,
GO2-GO5 at iteration 2 is calculated as:

weight GO2−GO5ð Þ
¼ weight MethodBð Þ þ weight MethodCð Þ

weight MethodAð Þ þ weight MethodBð Þ þ weight MethodCð Þ
¼ 0:44þ 0:38

0:3þ 0:44þ 0:38
¼ 0:73

The final result (most frequently occurring GOset) is
chosen in two ways: FPM_maxLen chooses the
maximum-length GOset among all in GListi (for all i),
and FPM_maxScoreLen chooses the maximum-length
GOset among the highest-scoring GOsets in all GListi
(among all i). For each target in the benchmark data,
the FPM algorithm runs once and generates the most
frequently predicted GO terms for that target. We used
0.7 as the predefined weight cut-off.

Fmax score
The Fmax score is computed according to the evaluation
strategy taken in CAFA1 [41]. For each target, given a true
annotation set T and a predicted annotation set Pt from
an AFP method above a certain GO confidence score
threshold t, precision and recall is calculated as follows:

precisiont ¼ TP
TP þ FP

recallt ¼ TP
TP þ FN

ð5Þ

where TP = T ∩ Pt; FP = Pt\T; FN = T\Pt. Then, at each
confidence threshold t, average precision and recall is
calculated across all targets. From these average values,
F-measure is calculated as the harmonic mean between
precision and recall at each confidence threshold value.
Then the maximum F-measure across all thresholds is
taken as the Fmax score:

F max ¼ max
t

2 � precisiont � recallt
precisiont þ recallt

� �
ð6Þ

Availability of supporting data
Benchmark datasets are hosted in the GigaScience
GigaDB database [60]. Additional file 1 also contains
additional text and Figures S1-S5.

Additional file

Additional file 1: Supplemental Material. Figure S1. Performance
of PFP evaluated on exact GO terms from BP and MF categories.
Figure S2. Performance of PFP and ESG evaluated on exact GO
terms from all three categories. Figure S3. Performance of PFP using
IEA and non-IEA GO terms from BP and MF categories. Figure S4.
Performance of PFP using IEA and non-IEA GO terms of all three
GO categories. Figure S5. Ranks of CONS and FPM among the
benchmarked methods. (DOCX 202 kb)
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