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Abstract

Background: It remains a challenge to perform de novo assembly using next-generation sequencing (NGS). Despite
the availability of multiple sequencing technologies and tools (e.g., assemblers) it is still difficult to assemble new
genomes at chromosome resolution (i.e., one sequence per chromosome). Obtaining high quality draft assemblies
is extremely important in the case of yeast genomes to better characterise major events in their evolutionary
history. The aim of this work is two-fold: on the one hand we want to show how combining different and
somewhat complementary technologies is key to improving assembly quality and correctness, and on the other hand
we present a de novo assembly pipeline we believe to be beneficial to core facility bioinformaticians. To demonstrate
both the effectiveness of combining technologies and the simplicity of the pipeline, here we present the results
obtained using the Dekkera bruxellensis genome.

Methods: In this work we used short-read Illumina data and long-read PacBio data combined with the
extreme long-range information from OpGen optical maps in the task of de novo genome assembly and
finishing. Moreover, we developed NouGAT, a semi-automated pipeline for read-preprocessing, de novo
assembly and assembly evaluation, which was instrumental for this work.

Results: We obtained a high quality draft assembly of a yeast genome, resolved on a chromosomal level.
Furthermore, this assembly was corrected for mis-assembly errors as demonstrated by resolving a large
collapsed repeat and by receiving higher scores by assembly evaluation tools. With the inclusion of PacBio
data we were able to fill about 5 % of the optical mapped genome not covered by the Illumina data.

Background
In the last decade we have witnessed an unprecedented
development in sequencing technologies. This is some-
times referred to as the next-generation sequencing
(NGS) revolution. Year by year, new technologies and
chemistries have, to varying degrees, enabled increased
throughput, read lengths and sequence quality. Cur-
rently there is a wide range of technologies and compan-
ies that allow sequencing and genomics analysis at a
speed and with a throughput thought impossible only
few years ago. In this work we focus our attention on

three established technologies and their compatible
tools: Illumina [1], PacBio [2] and OpGen [3]. However,
the methods presented here can easily be extended and
applied to similar and/or emerging technologies, e.g.,
IonTorrent [4], Oxford Nanopore [5] and BioNano [6].
The Illumina sequencing technology has become a lead-
ing tool in a wide range of application areas. Among
others, Illumina is used for whole genome resequencing,
haplotype phasing and identification of structural varia-
tions. Illumina technology is also widely used in de novo
genome assembly projects. Despite the short read length,
Illumina is used to quickly and cheaply obtain high gen-
ome coverages [7].
In 2011 Pacific Biosciences released the first commer-

cially available long-read sequencer based on single-
molecule real-time (SMRT) sequencing technology. In
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contrast to the short (i.e., 150 to 300 bp) Illumina
reads, the PacBio RS II instrument produces average
read lengths ranging from 10–15 kb, with the ultra-
long reads exceeding 50 kb. Such unprecedented read
lengths are ideal for de novo assembly. However, long
reads are also a key in studying structural variations
or investigating isoforms by sequencing full-length
intact transcripts [8–11].
Another technology is optical mapping [12–16], a

method based on mapping the position of enzyme restric-
tion sites along the sequence of the genome as observed
by fluorescence microscopy, which was automated
[17, 18] to achieve high-throughput solutions amen-
able to the analysis of complex genomes. This technique
allows the production of extremely long (hundreds of kbp)
restriction maps, which to date has been applied to, e.g.,
alignment to a reference sequence to identify structural
variations in bacteria [19–22] and in humans [23–25]. In
the field of de novo assembly, whole genome mapping has
been used for scaffolding prokaryote assemblies [26, 27]
and a fungus assembly [28], but also assemblies of com-
plex eukaryotes such as the domestic goat [29] and maize
[30]. Optical mapping was also used for refining the
mouse reference genome [31].
Yeasts are unicellular fungi, with a high diversity and a

high phylogenetic distance. They are essential for a num-
ber of biotechnological applications, for the functioning
of natural ecosystems or can act as human and animal
pathogens [32, 33]. Since they have relatively small and
compact genomes they are also ideal model organisms
to study eukaryotic genome evolution. Indeed, the first
sequenced eukaryotic organism was the yeast Saccharo-
myces cerevisiae in 1996 [34]. In 2010, about 40 yeast
species had been sequenced and reported [32]. After the
establishment of NGS, the number of sequenced yeast
genomes rapidly increased, and today, for some yeast
species, the intraspecific genome diversity between
strains can be determined [33, 35–37]. However, short-
read draft assemblies are often comprised of hundreds
of unsorted and disordered contigs. This makes it very
difficult, or impossible, to investigate chromosome rear-
rangements such as inversions, duplications or chromo-
somal translocations, which play an important role in
fungal evolution [32]. Moreover, pulsed field gel electro-
phoresis studies have shown considerable chromosome
polymorphisms among strains of fungal species [38–41],
thus making de novo assembly a much more difficult
and complex task.
In this work we will show how combining multiple

technologies in a de novo sequencing project – in effect
exploiting their individual strengths – is an optimal
strategy to improve the quality of the resulting assembly.
In doing so we will perform an extensive validation of
obtained assemblies. As a by product, we also present a

semi-automated de novo assembly pipeline, dubbed
‘NouGAT’, which was instrumental to this work. This
pipeline is currently in use at the National Genomic
Infrastructure hosted at SciLifeLab in Stockholm to
assemble hundreds of genomes every year. As a proof-of-
concept, we applied our approach to carry out a de novo
assembly of the yeast genome, Dekkera bruxellensis.

Methods
De novo assembly pipeline
We describe a semi-automated de novo assembly pipe-
line dubbed NouGAT [42], developed at the National
Genomics Infrastructure (NGI) at SciLifeLab in Sweden.
The aim of this tool is to easily (i) pre-process the
sequencing data, (ii) assemble input data in a semi-
automated way, (iii) evaluate and rank assemblies, and
(iv) use information from optical maps to improve the
quality of the draft assembly. NouGAT’s design is based
on the findings of the Assemblathon 1 and 2 challenges
[43, 44], and by the evaluation study GAGE [45]. Below
we demonstrate NouGAT, by assembling the genome of
D. bruxellensis, (see Fig. 1).
Pre-processing of reads is of great importance for

assembly quality, as previously demonstrated by the
GAGE study [45]. It is also essential to assess the quality
of the reads to spot problems in the steps prior to as-
sembly, e.g., DNA extraction, library construction and
sequencing. For short-read data, the pipeline uses Trim-
momatic [46] for removing adapter contamination and
low quality regions. This has been shown to prevent the
generation of adapter-chimeric contigs and to increase
assembly contiguity [46]. Using the trimmed reads as
input, the pipeline plots the k-mer abundance as gener-
ated by ABySS [47] and the quality metrics generated by
FastQC [48].
The assembly sub-pipeline is created to enable a var-

iety of assembly programs to be run. As previously
shown in the Assemblathon and GAGE studies, different
assemblers can result in completely different assembly
qualities. However, the large number of assemblers, and
the large number of user-definable parameters, can make
this a difficult task. NouGAT allows the user to run a
number of assemblers (seven are currently supported)
by specifying a single configuration file. Currently only
Illumina-only assemblers are supported, but ongoing
work is in progress to extend this subpipeline to PacBio
and hybrid assemblers.
For evaluating assemblies, the standard contiguity and

size metrics (e.g., N50, average contig size, etc.) may give
a false representation of its correctness [49]. As an ex-
ample, an assembly composed of few but very long con-
tigs (i.e., a highly connected assembly) might not always
be the best representation of the underlying genome
[45] because longer contigs could be the results of a too-
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eager assembly strategy. A handful of tools exists to gauge
assembly quality and correctness on the basis of more reli-
able metrics [49–51]. The majority of these tools try to
reconstruct the read layout and to identify areas of the
assembly that are likely to contain mis-assemblies. We
decided to employ feature-response curves (FRC) [49].
FRC uses anomalously mapped paired-end and mate-pair
reads to identify suspicious areas, called features. Subse-
quently, features are tallied for each contig, along with the
estimated contig genomic coverages. These points are
ordered by decreasing contig size and plotted by accumu-
lating the number of features. The resulting plot is, in
some aspects, similar to a receiver operating characteristic
(ROC), where the assembly with the steepest curve is
likely to contain fewer mis-assemblies.

The strategy for assembly refinement using optical
maps is to select the two best performing assemblies and
place their contigs on the optical maps. This entails
manual curation using OpGen’s Mapsolver software.
Subsequently, a consensus sequence is generated for
each assembled optical map using a utility script found
in NouGAT.

Results
De novo assembly
A total of seven assemblies were generated using Illumina
and PacBio sequencing data (for a summary of computa-
tional resources used see Additional file 1: Table S4). We
used these two data sets both in isolation and combined.
To generate assemblies from only Illumina reads, we used
ALLPATHS-LG [52], ABySS [47], and SOAPdenovo [53].
For assembly of PacBio reads only, HGAP [8] and
FALCON [54] were used. Illumina-PacBio hybrid assem-
blies were generated by AHA [55] and CABOG (using
pacBioToCA error correction by Illumina reads) [56]. For
assemblers using a De Bruijn Graph method with a
mandatory k-mer size parameter (ABySS and SOAPde-
novo), we tested a range of k when running SOAPdenovo,
and found k = 61 to be optimal (see Additional file 1).
We computed standard contiguity metrics (Table 1)

for all assemblies. Table 1 shows that ALLPATHS-LG
gave the most well connected Illumina assembly, i.e.,
greater N50 and fewer but longer contigs. In compari-
son, the ABySS assembly had the lowest N50 number
and more numerous but shorter contigs. In terms of
N50, the SOAPdenovo assembly can be regarded as be-
ing better connected than the ABySS assembly; however,
a large majority of the assembly consists of contigs less
than 1 kbp in length. When considering PacBio only
assemblies, the most connected assembly is the one pro-
duced by HGAP, which has an N50 four times shorter
than that produced by ALLPATHS-LG. FALCON per-
formed noticeably worse than HGAP, with a much lower
assembly length (see Table 1) and a lower N50. However,
FALCON is experimental and might not be suitable for
the input data, and/or it was used with non-optimal pa-
rameters. AHA fared best among the hybrid-assemblies.
In the absence of a reference sequence, it is difficult, if

not impossible, to determine the assembly that is most
representative for the underlying genome based on the
standard contiguity metrics alone. We ran CEGMA on
all assemblies to evaluate their gene space (see Fig. 5
and section below for more details). However, CEGMA
only helped us to identify SOAPdenovo, FALCON, and
AHA as outliers. The remaining five assemblies con-
tained a similar number of core genes. We decided to
use FRC analysis to evaluate our assemblies, used in a
similar way to that used for the Norway spruce genome
[7] and GAM-NGS studies [57]. The cumulative feature

Fig. 1 Bioinformatic workflow overview. There were three entry
points of data, shown by boxes with white shading: Illumina read
data, PacBio read data and OpGen optical map data. Boxes
shaded in dark blue show work done by the assembly pipeline
in a semi-automated fashion: quality control (and trimming)
of short-read Illumina data, Illumina-only assemblers, evaluation
of assembly quality (for all assemblies) using feature-response
curves and standard metrics, preparing two chosen assemblies
for in silico digestion and optical map placement and finally using
open_util.py to generate an assembly from the scaffold-optical map
placement coordinates. Work done outside the assembly pipeline is
shown as boxes with light blue shading: the PacBio-only assemblies,
the PacBio-Illumina hybrid assemblies and the operation of OpGen’s
Mapsolver software for in silico digestion and placement of scaffolds
and their placement on optical maps
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curves (Fig. 2) confirmed the poor performance of the
less connected assemblies produced by ABySS and FAL-
CON. FRC did, however, overturn the contiguity metrics
for most connected assemblies: ALLPATHS-LG and
HGAP. FRC also reshaped the order of PacBio assem-
blers pacBioToCa and HGAP. ALLPATHS-LG was not
only the best Illumina assembler, but also generated the
assembly with fewest features, i.e., areas of suspected
mis-assembly. However, Fig. 2 shows that HGAP was
able to cover more of the genome while introducing
fewer features. Clearly, the long ALLPATHS-LG contigs
accumulate more features than the shorter HGAP con-
tigs, e.g., with 2000 features we were able to cover more
than 60 % of HGAP assembly but ‘only’ 50 % of that
assembled by ALLPATH-LG. This might suggest that
the long ALLPATH-LG contigs are the result of a too-

eager assembly strategy (see Fig. 3 and Additional file 1:
Figure S2). Remarkably AHA, one of the better con-
nected assemblies, performed much worse than pacBio-
ToCA because of it had a high number of compressed
repeat features (Additional file 1: Figure S3).
After a careful analysis of contiguity metrics, CEGMA

hits, FRC curves, and coverage plots (Additional file 1:
Figure S4 and S5) automatically produced by the
NouGAT, we deemed ALLPATHS-LG and HGAP to
have produced the best assemblies. Consequently, we
chose them for optical map placement.

Optical map placement
From the OpGen imaging and data processing steps,
seven optical maps were obtained, named Chromosome
1, Chromosome 2, etc., spanning about 16.79 Mbp in
total. This is an impressive result compared with the 308
and 351 unordered contigs generated by HGAP and
ALLPATHS-LG, and with this critical information we
were able to both spatially resolve the D. bruxellensis
genome and to error correct de novo assembled contigs.
Using OpGen’s MapSolver software to digest in silico
assembled sequences and placement on optical maps,
we devised the following strategy: first cover the maps
using ALLPATHS-LG contigs of minimum 40 kbp
length (shorter fragments cannot be placed as they do
not have enough in silico restriction enzyme cuts), and
then fill in any remaining gaps using HGAP assembled
contigs. Using this method we were able to cover 87 %
with contigs, with the remaining unplaced ALLPATHS-
LG contigs included as ‘unknown’ sequences.
An interesting feature of note is represented in Fig. 3.

In this figure we can clearly appreciate the potentiality
of optical mapping when it comes to finishing and error
correcting draft assemblies. Chromosome 1 has been
assembled to a single restriction map using optical map-
ping. The figure represents a complex repeat structure,
shown schematically as three sequences labelled a1, a2,
b1, and a3, with a2 and a3 containing an identical repeat

Table 1 Standard contiguity metrics

Name #scaff #scaff > 1000 N50 max_scf asm_lgth asm_lgth >1000

Chr1-7 15 15 3706655 4993496 17319971 17319971

Chr1-4 12 12 3706655 4993496 14763326 14763326

soapdenovo 66606 396 263103 1117059 25625475 13038098

allpaths 352 349 610180 1845683 13885397 13882423

abyss 6523 1061 46286 581122 18806852 18097355

HGAP 308 308 147223 776319 14719721 14719721

FALCON 410 405 30567 152911 10731982 10728849

AHA 241 241 201733 758433 15105135 15105135

pacBioToCA 1579 1579 157083 692841 17014896 17014896

Columns from left to right: name of the assembly, number of scaffolds, number of scaffolds after removing those under 1 kbp, N50, N80, the longest scaffold,
assembly length, assembly length after removing scaffolds under 1 kbp

Fig. 2 Feature response curves. Feature response curves (FRC) for
assemblies considered for optical map placement. On the x-axis is
the total number of features normalised for the assembly contig count.
On the y-axis is the coverage based on the estimated genome size of
14,719,721 bp (size of the first completed assembly, HGAP)
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the size of approximately 434 kbp. Thanks to the longer
fragment lengths utilised by this method, a complex
repeat structure has been resolved (contained in regions
a2 and a3). Neither ALLPATHS-LG nor HGAP (i.e.,
neither Illumina nor PacBio) alone has been able to
correctly reconstruct such a complex scenario. HGAP
resulted in 13 small contigs partially covering regions a2
and a3, one of which is placed in both (see Additional
file 1: Figure S2). ALLPATHS-LG has been able to
produce an extremely long contig, likely using the infor-
mation inferred from the longest mate-pair library.
However, Fig. 3 clearly demonstrates that the long con-
tig, ap_contig1, is the result of wrong decisions made
during scaffolding; not only that a complex repeat is col-
lapsed to a single copy, but a 545 kbp region is absent
and placed in a different contig (region B of ap_contig6).
This scenario clearly shows the additional value added
by optical maps and the importance of being mindful
when presented with long contigs generated from rela-
tively short DNA fragments.
To represent the haploid genome (in the style of a ref-

erence genome), we had concerns about the maps for
Chromosomes 7, 6 and later 5, since all the ALLPATHS-
LG contigs placed therein were duplicates of ones found
in the first four maps. The maps for chr5–7 were con-
siderably smaller in size than those preceeding. Further-
more, Mapsolver showed large map-to-map alignments

between these two groups (chr1–4 to chr5–7), which
strongly suggests that these regions are recombinations.
To test how well chr5–7 are supported by the sequen-

cing data we generated two map-placed consensus se-
quences: one consisting of sequences for chr1–7 and
another of sequences chr1–4. These were processed by
the assembly evaluation pipeline, and the feature re-
sponse curves (Fig. 4) clearly indicated that the assembly
for chr1–4 is the best performing assembly, which it
owes mainly to the reduction of low coverage regions
when the Illumina reads are mapped. It also becomes
obvious that chr1–4 is able to cover more of the genome
than HGAP (the best performing assembly), while intro-
ducing fewer features: approximately 4900 in chr1–4
compared with 5800 in HGAP.

Validation using CEGMA
As an extra validation step we ran CEGMA [58], which
maps the assembled sequences to a set of 458 highly
conserved eukaryotic genes. For the 248 most extremely
conserved genes, alignments to the queried assembly are
classified as ‘complete’ or ‘partial’ depending on a fixed
alignment length threshold. Of the total number of
CEGMA hits, allpaths and HGAP performed equally
with 246 hits of which one is a partial hit. While the re-
sults from CEGMA were not, in our case, essential to
the evaluation of the assemblies (over 95 % completion

Fig. 3 Placement of ap_contig1 to optical map Chromosome 1. An illustration re-drawn from the output of the OpGen’s Mapsolver software,
where in silico digested allpaths-lg contigs are placed to the optical map Chromosome 1. It shows a complex rearrangement where flaws in the
allpaths-lg assembly are corrected. The 1.38 Mbp region A´ of ap_contig1 is a collapsed repeat structure, which the optical map was able to resolve
and subsequently could be placed to regions a1 and a2 of Chromosome 1. This map placement is highlighted in transparent red for clarity and shows
that the sequences were placed in inversed orientation. Furthermore, a2 and a3 are flanking the placed sequence b1, originating from the B region of
the contig ap_contig6. On the left flank of B is an unplaced region whose restriction enzyme cuts could not be aligned to the cuts made by the Argus
system, and is likely the result of mis-assembly
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for most assemblies, Additional file 1: Table S1), two ob-
servations are remarkable. First, FALCON and abyss,
which we earlier established as ‘poor’, are reflected in
these results by having a lower completion rate. Second,
the final Dekkera assembly (chr1–4) received a total of
240 hits, of which three are partial hits (Fig. 5) retaining
most of the core genes in an ordered and oriented man-
ner. Further evidence of chr5–7 being artifacts of mis-
assembly is the fact that excluding these did not reduce
the total number of hits, only a partial loss of one hit.
This can also be seen by the higher percentage of ortho-
logous hits in chr5–7 (Additional file 1: Table S1).

Genome completion using PacBio
We carefully investigated the proportion of optical maps
that is assembled exclusively by HGAP. In other words,
we wanted to check what we gain by combining Illumina
and PacBio assemblies. HGAP contigs were able to add
487 kbp of new sequences, which ALLPATHS-LG was
not able to reconstruct. Moreover, 363 kbp out of 532 kbp
of ambiguous sequences (gaps and ambiguous base calls)
could be replaced using the sequencing information from

HGAP contigs. In total, the PacBio data allowed us to re-
solve slightly more than 5 % (Additional file 1: Table S3)
of additional genomic content. We believe that, when au-
tomated, this presents an effective strategy for genome
finishing.

Discussion
During a de novo project several decisions need to be
taken, often based on little tangible information: which
sequencing technology to use, which type of libraries to
prepare, what sequencing depth to aim for, which assem-
bler to employ, etc. A poor initial choice can lead to ex-
tremely poor results, and these choices are often guided
by budget, available technology and/or in-house expert-
ise. The multitude of different tools and approaches to
de novo assembly can often lead to an inefficient trial-
and-error approach to find acceptable results, prolong-
ing the project and increasing the cost.
This study addressed the problem of the scarcity of

methods for efficient scaffolding of genomic contigs into
chromosomal units. Rapid development of sequencing
technologies exceeded the establishment of pipelines for

A B

Fig. 4 Total and low coverage feature response curves. The total feature response curves (a) only shown for HGAP, allpaths, chr1–7 and chr1–4.
The decreased number of features when removing Chromosomes 7, 6 and 5 is mostly attributed to regions of low read coverage (b)

Fig. 5 Reported CEGMA gene hits. Barchart showing the number of hits to a set of 248 extremely conserved eukaryotic genes, as reported by
CEGMA. Classified as either ‘complete’ or ‘partial’, depending on the alignment percentage
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high-quality draft genome assembly and resulted in fast
generation of low-quality genome drafts in public data-
bases [59, 60]. Our study presents a solution to this
problem. Using an efficient scaffolding approach guided
by application of OpGen optical map placement allowed
us to reconstruct the chromosomal makeup of a yeast
species. Previously, presentation of a genome on the
chromosome level was done only for a limited number
of yeast species, and by using expensive and time con-
suming Sanger sequencing [34]. Other promising alter-
native scaffolding methods based on the conformation
capture (3C) principle were shown to be efficient for
several genomes, including that of the yeast Saccharomy-
ces cerevisiae [61]. Our approach presents a simplified
automated procedure of rapid ordering of PacBio and
Illumina-derived contigs according to restriction maps
from single microbial DNA molecules. The technique
described in this paper can easily be extended to com-
plex eukaryotic organisms. However, it must be taken
into account that for larger eukaryotic genomes the
steps involved in optical map scaffolding might be
laborious and time consuming. Nevertheless, recent
publications have shown how optical maps can greatly
improve assembly results [29].
In this paper we have demonstrated a method requiring

little effort to generate a high-quality draft assembly that
can open up new opportunities for assembling complex
genomes. In particular, we showed how combining several
technologies and using a semi-automated pipeline can
easily allow the production of an almost-finished yeast
genome assembly. Thanks to their compact genomes and
distinct physiological properties, yeasts are ideal model
organisms to study evolution [62]. Evolution of a central
core of about 4000 genes in the yeast genome has resulted
in the origin of various yeast species [63]. Evolutionary
events, such as gains and losses of genes were shown to
be influenced by their location on a chromosome [64].
Thus, the representation of yeast genomes on the
chromosomal scale will allow evolutionary events to be
traced and a better understanding of the mechanistic basis
behind the versatile diversity of yeast species. While our
approach can easily be applied to a wider set of organisms,
we assert that it has the potential to bring yeast compara-
tive genomics up from the sequence level [65–68] to the
level of chromosomal site analysis. This gives us a tool to
extend our understanding of poorly investigated yeast
genome structure and function.
The method presented in this study resulted in the

determination of a haplotype number of chromo-
somes in this yeast strain. Analysis of the level of het-
erozygosity allows us to conclude that the examined
genome is more than haploid. One limitation of the
presented method is associated with its inability to
identify exact ploidy. Additional biochemical methods

may resolve ploidy characteristics, such as determin-
ing the amount of DNA per cell and its correlation
to the genome size.

Conclusions
In this study we have demonstrated a novel way to com-
bine three high-throughput technologies to produce a
high quality assembly of the Dekkera bruxellensis gen-
ome. We employed an extensive number of assemblies
using Illumina, PacBio, and a combination of the two
technologies. We did this using a semi-automated pipe-
line that not only reduced the amount of time needed
(in particular bioinformatic operator time) but also made
our results easy to reproduce and validate. We used op-
tical maps to resolve the genome on a chromosomal
level and to error correct the inherent weaknesses of
short-read assemblies, while using a long-read assembly
to fill in uncovered regions. A set of utility scripts to
produce a chromosome level assembly from optical map
placement has been designed and is available together
with the semi-automated de novo pipeline. Our de novo
pipeline is currently used to process all de novo assem-
bly projects currently sequenced at NGI-Stockholm.
Hundreds of genomes per year are assembled, evaluated,
and subsequently delivered to our users.

Availability and requirements
Project name: NouGAT
Project home page: https://github.com/SciLifeLab/

NouGAT/
Operating system(s): Platform independent, Linux

(64-bit) recommended
Programming language: Python 2.7
Other requirements: Anaconda (https://www.conti

nuum.io/)
License: MIT
Any restrictions to use by non-academics: None

Availability of supporting data
The sequence data is available in the EBI ENA reposi-
tory, under the study ERP012947. The data set support-
ing the results of this article is available in the
GigaScience Database [69].

Additional file

Additional file 1: Additional figures and tables, including method
descriptions. (PDF 721 kb)
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ABySS: Assembly By Short Sequences, assembly software; bp: Base pair;
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